




# CORROSION ISSUES IN STEELS CONTACTING Pb-Bi EUTECTIC AT HIGH TEMPERATURES – OVERVIEW OF KIT ACTIVITY

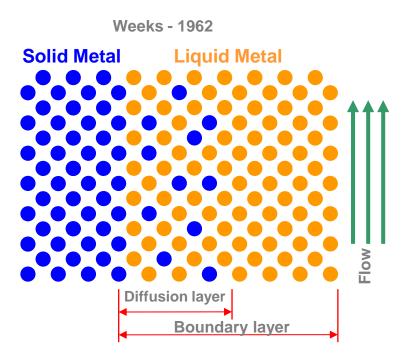
Valentyn Tsisar, Carsten Schroer, Olaf Wedemeyer, Aleksandr Skrypnik, Jürgen Konys

#### INSTITUTE FOR APPLIED MATERIALS – APPLIED MATERIALS PHYSICS (IAM-WPT)



## Candidate liquid-metal media for Fusion and Fission reactors




- ☐ Good nuclear and thermal-physical properties
- □ High thermal efficiency
- ☐ High boiling temperatures
- ☐ Wide range between melting and boiling temperatures
- Low vapor pressure
- High heat transfer coefficient

| Liquid Metal                                      | Advantages                                                                                                                                                                                    | Disadvantages                                                                                                  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Li<br>Tm = 180*C<br>coolant and/or breeder        | <ul> <li>Very low induced activity</li> <li>Low density (0.5316 g/cm³)</li> <li>High tritium breeding ratio (TBR)</li> <li>Low tritium leakage</li> <li>Easiness of neutralization</li> </ul> | <ul><li>High chemical activity to air and water</li><li>MHD pressure drop;</li><li>Tritium recovery;</li></ul> |
| Pb-Li<br>Tm = 235*C<br>coolant and/or breeder     | <ul><li>Low chemical activity to air and water</li><li>Sufficient TBR</li></ul>                                                                                                               | <ul><li>Tritium leakage;</li><li>MHD pressure drop issue;</li><li>Corrosion aggressiveness;</li></ul>          |
| Pb<br>Tm = 327*C<br>Coolant                       | <ul> <li>High spallation neutron yield</li> <li>Low γ-radioactivity induced in Pb and Pb-Bi</li> <li>Low neutron moderation and capture</li> </ul>                                            | High corrosion aggressiveness  Liquid Metal Embitterment (LME);  Production of α-radioactive volatile 210Po    |
| Pb-Bi Tm = 123*C coolant and/or spallation target | <ul><li>Chemical inertness with water</li><li>Neutron multiplication</li></ul>                                                                                                                | from Bi and Pb – hazard for the environment                                                                    |

### Interaction between solid and liquid metals



#### **Dissolution - basic interaction phenomenon!**



- □ Fail in bond among atoms in solid metal;
- Bonding of dissolved atom with atoms of liquid metal.

Dissolution process is characterized by:

- SOLUBILITY saturation concentration of solid metal in liquid one;
- CONSTANT of DISSOLUTION RATE.

Dissolution rate is expressed by Nernst equation:

 $dCv/dt = \alpha \cdot (S / V) \cdot (C_{sat} - C_{V});$ 

Cv – concentration of dissolved metal in liquid metal;

Csat – saturation concentration of solid metal in liquid metal;

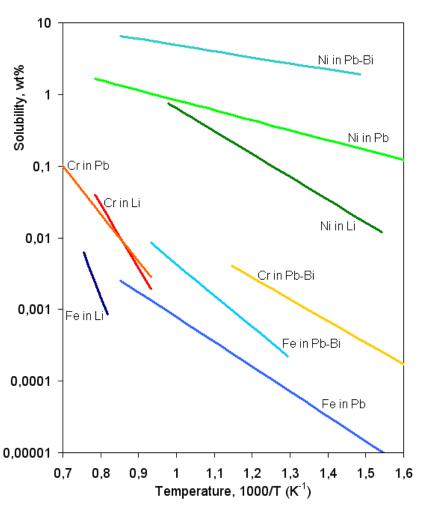
*t* – time:

 $\alpha$  – constant of dissolution rate;

S - surface area of solid metal contacting with liquid metal (cm<sup>2</sup>);

V - liquid metal volume (cm<sup>3</sup>).

Kinetic equation of dissolution:


 $Cv = C_{sat} \cdot [1-exp(-(\alpha \cdot S/V) \cdot t)]$ 

Constant of dissolution rate:

 $\alpha = In [C_{sat} / C_{sat} - C_{v}] \cdot V / S \cdot t$ 

## Solubility of Fe, Cr and Ni as a pure metals in liquid Li, Pb and Pb-Bi





Temperature dependence of dissolution:

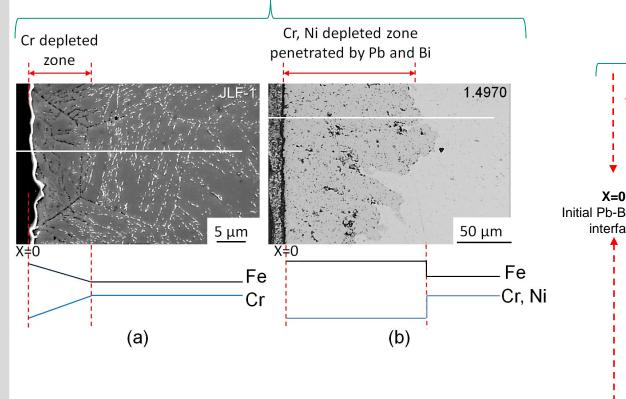
$$log C (wt.\%) = A - B / T;$$

$$T - temperature (K);$$
A and B - constants

□ The solubility of Fe, Cr and Ni in melts (corrosion aggressiveness of liquid metals) increases in the following sequence:

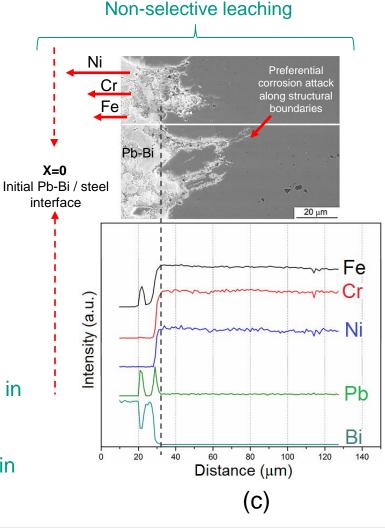
$$Li \rightarrow Pb \rightarrow Pb$$
-Bi.

Lyublinski et al., JNM 224 (1995) 288;


http://www.nea.fr/html/science/reports/2007/nea6195-handbook.html.

### Solution-based corrosion modes




#### Leaching of steel constituents by liquid metal



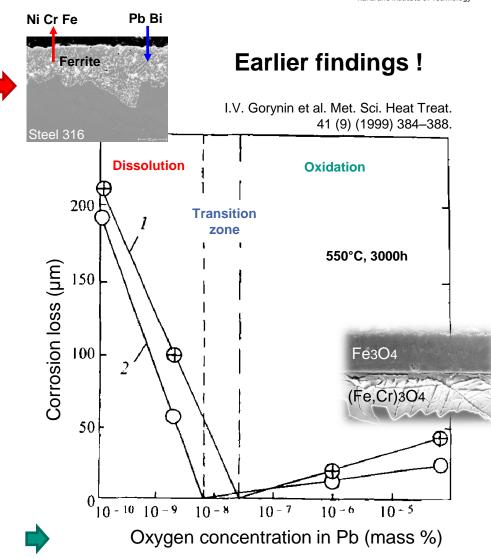


(a) Solution-based attack is controlled by the Cr diffusion in the near surface layer of steel;

(b, c) Solution-based attack is controlled by the diffusion in boundary layer of liquid metal.



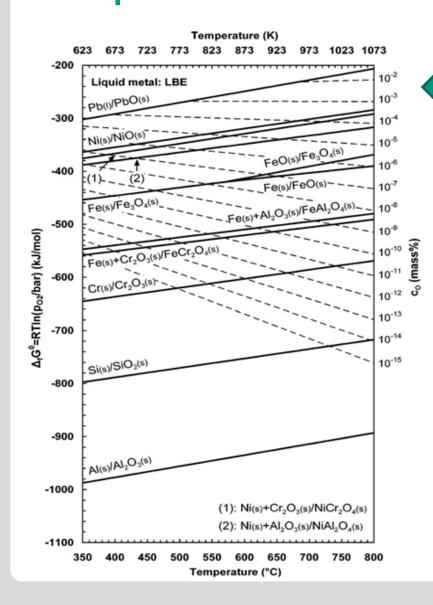
### Liquid metal corrosion - background




#### Issue!

- Dissolution of Ni, Cr and Fe from the steel by liquid metal:
- Formation of week corrosion zone with ferrite structure on austenitic matrix
- Liquid metal penetrates into the ferrite

#### **Solution!?**


- Oxidation instead of dissolution:
- Formation of continuous and protective oxide layer
- Long-term operation of scale in protective mode



1 and 2 – austenitic steels of 316L type

## Thermodynamic basis for in-situ addition of oxygen into liquid Pb-Bi eutectic

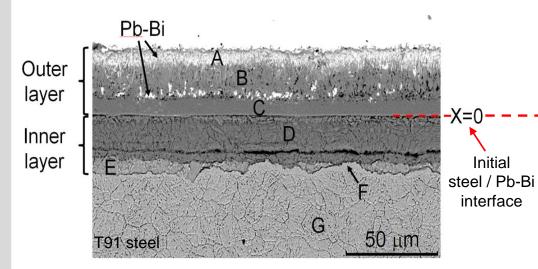




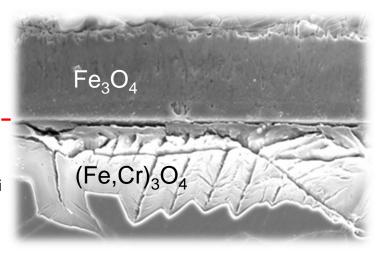
Free energy of formation of oxides (solid lines) and Pb-Bi[O] solutions (dashed lines)

- Pb-Bi dissolves and transports oxygen;
- Components of steels (Si, Cr, Fe...) have high affinity to oxygen than Pb or Bi.




Oxidation of steel surface instead of dissolution of steel constituents by liquid metal




### Oxidation of steels in Pb, Pb-Bi melts



#### Ferritic/martensitic steels



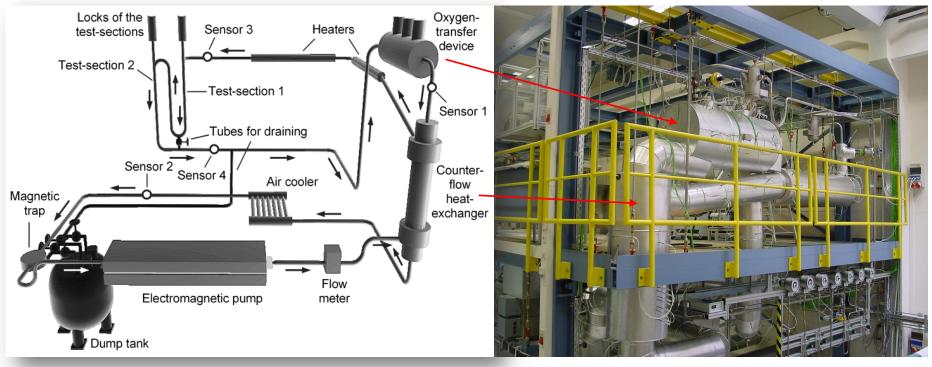
#### **Austenitic steels**



Bi-layer scale, with outer Fe<sub>3</sub>O<sub>4</sub> (magnetite spinel) and inner Fe(Fe,Cr)<sub>2</sub>O<sub>4</sub> spinel-type oxide layers, typically forms on the surface of steels in contact with oxygen-containing Pb and Pb-Bi melts

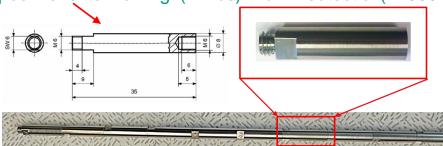
Initial

- Growth of scale is governed by the outward diffusion of iron cations
- Inward growth of Fe-Cr spinel at the oxide / steel interface could be accessed from the dissociative growth theory: vacancies generated by outward diffusion of iron cations precipitate at the oxide/steel interface forming cavities (pores) into which the oxide dissociates with evaporating oxygen providing further oxidation of steel (S. Mrowec, Corrosion Science 7 (1967) 563-578).


## Activity towards successful application of liquid metal technologies



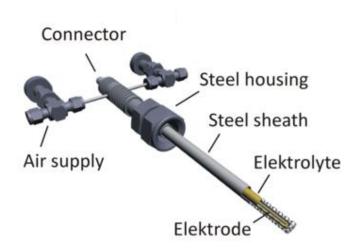
- □ Principal understanding of corrosion phenomena taking place in the steel / Heavy Liquid Metals system does not free from the experimental determination of the optimal temperature – oxygen concentration range.
- Main aim of the corrosion tests is to determine the optimum temperature-oxygen concentration parameters for save and long-term operation of structural materials in contact with liquid Pb and Pb-Bi eutectic.
- ☐ The reliable quantitative data on corrosion loss based on the long-run tests performed in liquid metals with controlled oxygen concentration are still very scarce up to date.


## CORRosion In Dynamic lead Alloys CORRIDA Pb-Bi eutectic liquid-metal loop

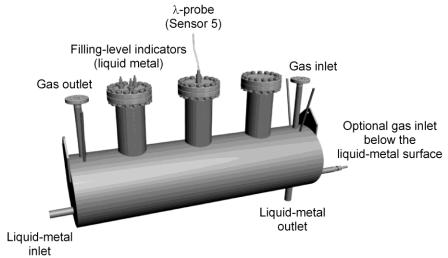




The CORRIDA facility – a forced-convection loop made of austenitic stainless steel (1.4571) designed to expose material (steel) specimens to flowing (2 m/s) Pb-Bi eutectic (~1000 kg) with controlled oxygen


concentration.



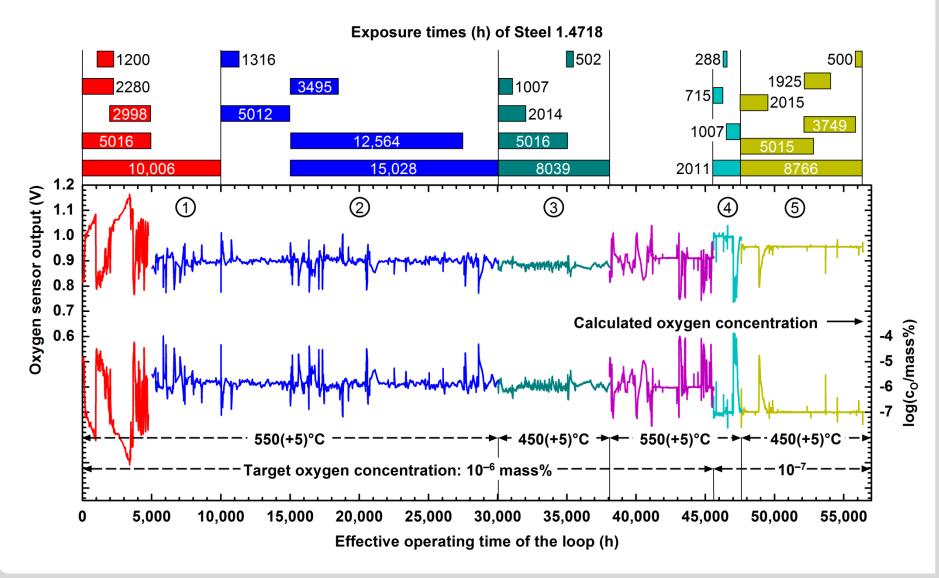

### Gas/liquid oxygen-control system



#### Pt/air oxygen sensor



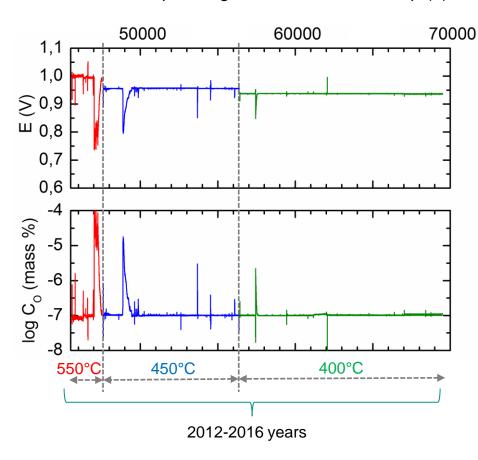
#### Oxygen-transfer device




- Transformation of a difference in the chemical potential of oxygen into a difference in the electrochemical potential of electrons
- Transmission to a voltmeter and indication as electric voltage
- Calculation of the unknown oxygen potential from the known potential at the reference electrode:  $log(CO_{Pb-Bi}) = -3.2837 + \frac{6949.8}{T} 10080 \frac{E}{T}$
- Conversion to partial pressure, concentration of dissolved oxygen, etc.

- Ar-carrier gas with automated air addition
- Optional humidification of the gas
- Ar-H<sub>2</sub> for removal oxygen from the liquid Pb-Bi

## Measured oxygen potential/concentration as a function of operating time






## Conditions of corrosion tests performed for period from 2012 to 2016 years



Effective operating time of CORRIDA loop (h)



Flow velocity 2 m/s

Target oxygen concentration in Pb-Bi = 10<sup>-7</sup> mass%

 $\Box$  T = 550°C

excursion to 10<sup>-4</sup>–10<sup>-5</sup> mass%O

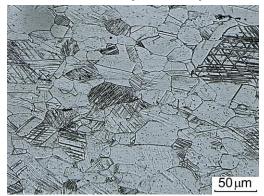
t = 288; 715; 1007; 2011 h

 $\Box$  T = 450°C

excursion to 10<sup>-5</sup> mass% O

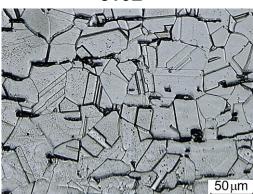
t = 500; 1007; 1925; 2015; 3749; 5015; 8766 h

 $T = 400^{\circ}C$ 


t = 1007; 2015; 4746; 13194 h

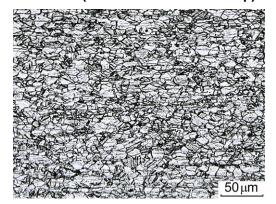
### Austenitic steels tested in the CORRIDA loop




| (Fe – Bal.) | Cr    | Ni   | Мо   | Mn   | Si   | Cu    | V     | W       | Al    | Ti   | С     | N     | Р      | S      | В      |
|-------------|-------|------|------|------|------|-------|-------|---------|-------|------|-------|-------|--------|--------|--------|
| 316L        | 16.73 | 9.97 | 2.05 | 1.81 | 0.67 | 0.23  | 0.07  | 0.02    | 0.018 | -    | 0.019 | 0.029 | 0.032  | 0.0035 | -      |
| 1.4970      | 15.95 | 15.4 | 1.2  | 1.49 | 0.52 | 0.026 | 0.036 | < 0.005 | 0.023 | 0.44 | 0.1   | 0.009 | < 0.01 | 0.0036 | < 0.01 |
| 1.4571      | 17.50 | 12   | 2.0  | 2.0  | 1.0  | -     | -     | -       | -     | 0.70 | 0.08  | -     | 0.045  | 0.015  | -      |

#### 1.4970 (15-15Ti)




- HV<sub>30</sub> = 253;
- Grain size ranged from 20 to 65 µm;
- Intersecting deformation twins.

316L



- HV<sub>30</sub> = 132;
- Grain size averaged 50 µm (G 5.5);
- Annealing twins.

#### 1.4571 (material of CORRIDA loop)



- HV<sub>30</sub> = 245;
- Fine-grained structure with grain size averaged 15 μm (G 9.5).

### F/M steels tested in the CORRIDA loop

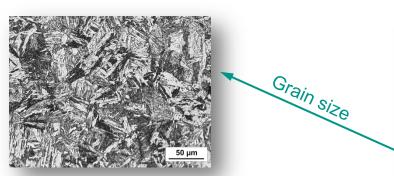


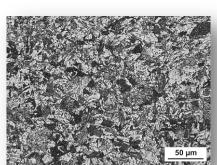
#### Concentration (in mass%) of alloying elements other than Fe

| (Fe – Bal.) | Cr            | Мо            | W             | V             | Nb            | Та   | Mn            | Ni            | Si            | С             |
|-------------|---------------|---------------|---------------|---------------|---------------|------|---------------|---------------|---------------|---------------|
| T91-A       | 9.44          | 0.850         | <0.003        | 0.196         | 0.072         | n.a. | 0.588         | 0.100         | 0.272         | 0.075         |
| T91-B       | 8.99          | 0.89          | 0.01          | 0.21          | 0.06          | n.a. | 0.38          | 0.11          | 0.22          | 0.1025        |
| P92         | 8.99          | 0.49          | 1.75          | 0.20          | 0.06          | -    | 0.43          | 0.12          | 0.26          | 0.11          |
| E911*       | 8.50-<br>9.50 | 0.90-<br>1.10 | 0.90-<br>1.10 | 0.18-<br>0.25 | 0.06-<br>0.10 | -    | 0.30-<br>0.60 | 0.10-<br>0.40 | 0.10-<br>0.50 | 0.09-<br>0.13 |
| EUROFER     | 8.82          | 0.0010        | 1.09          | 0.20          | n.a           | 0.13 | 0.47          | 0.020         | 0.040         | 0.11          |

<sup>\*</sup>nominal composition 🖍




Nominally 9 mass% Cr




Element besides Cr that improves oxidation resistance

#### Martensitic microstructure of F/M steels

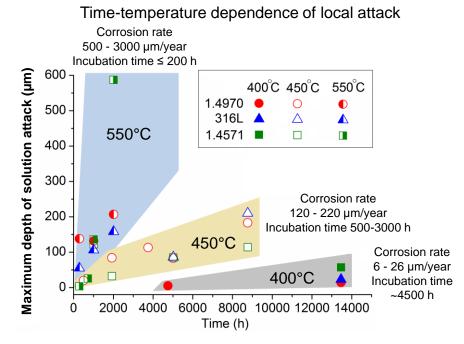
E911, T91-A, T91-B, P92





**EUROFER** 

### Corrosion response of austenitic steels

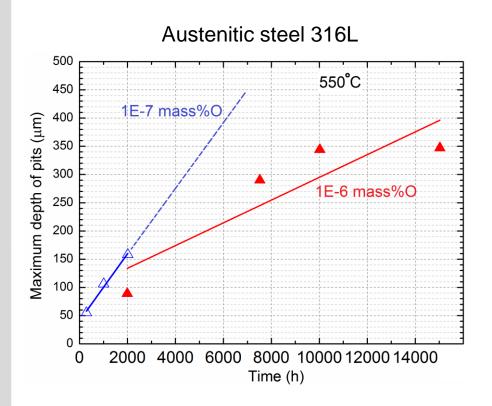

Flowing Pb-Bi (2 m/s), 10<sup>-7</sup> mass% O, 400-550°C



0 h 2000 h

Oxidation + Local pit-type solution-based attack

900 um




- □ 10% of wall thinning for cladding tube corrosion criterion suggested for "steel / sodium" system;
- Corrosion limit for 450 μm thick cladding tube made of 1.4970 steel is 45 μm;
- □ 550 and 450°C could not be a working temperatures in Pb-Bi with 10<sup>-7</sup> mass% O;
- At 400°C, corrosion limit for 1.4970 could be reached for about 33000 h (~4 years) that is probably within an appropriate time for life-time of cladding tube made of 1.4970 (15-15 Ti) steel.

-ocal solution-based corrosion attack

## Local corrosion depending on oxygen concentration in the Pb-Bi eutectic



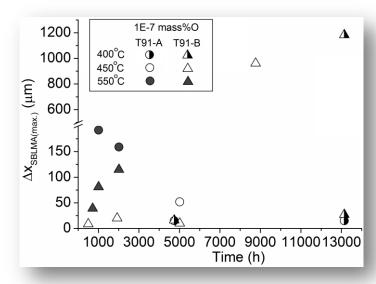


- □ Local corrosion rate (linear law) increases with decreasing oxygen concentration at constant T = 550°C:
  - 270 µm/year for 10<sup>-6</sup> mass%O
  - 560 µm/year for 10<sup>-7</sup> mass%O
- ☐ Incubation time for initiation of dissolution attack decreases with decreasing oxygen concentration in Pb-Bi eutectic:
  - ≤ 300 h for 10<sup>-7</sup> mass%O
  - ≤ 2000h for 10<sup>-6</sup> mass%O

#### Corrosion loss on 9%Cr F/M steels in

Flowing Pb-Bi (2 m/s), 10<sup>-7</sup> mass% O, 400-550°C



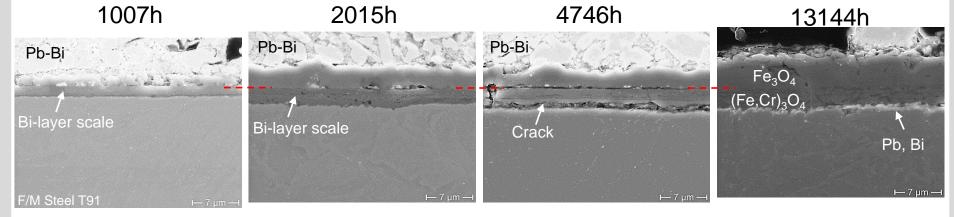

## General corrosion trend: oxidation

X=0 - Fe-Cr-O Steel

20 T91-A T91-B 400°C 400°C, 450°C, Δx<sub>SP</sub> (μm) 15- $550^{\circ}$ C,  $\Delta x_{SP+IOZ}$  ( $\mu m$ )  $\stackrel{\circ}{\Rightarrow}$ 550°C  $\triangle$ 10 5 8000 12000 16000 4000 Time (h)

## Local corrosion trend: solution-based leaching of steel constituents (Fe, Cr)



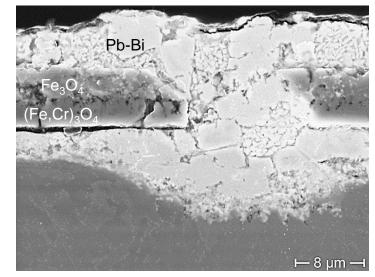



- ☐ In comparison to 450 or 550°C the impact of oxidation is significantly reduced at 400 °C;
- ☐ Severe local dissolution attack, as a result of scale failure, occurs.

### **Example of oxide scale evolution with time**

Flowing Pb-Bi (2 m/s), 10<sup>-7</sup> mass%O, 400°C



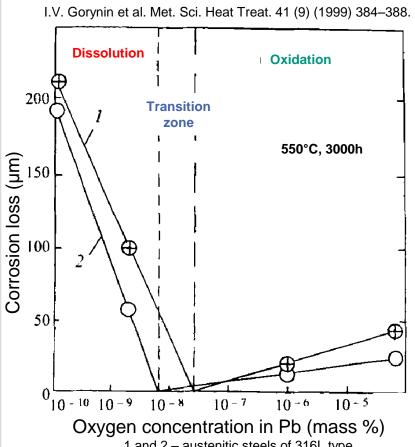



---- Initial steel / liquid Pb-Bi interface



- ☐ General corrosion trend is oxidation
- Degradation of scale with time results in initiation of dissolution attack
- □ Re-healing of scale does not take place!

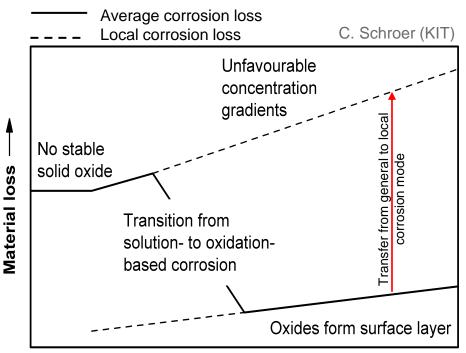
#### Dissolution attack as a result of scale failure




### Comparison of earlier findings and today's vision!



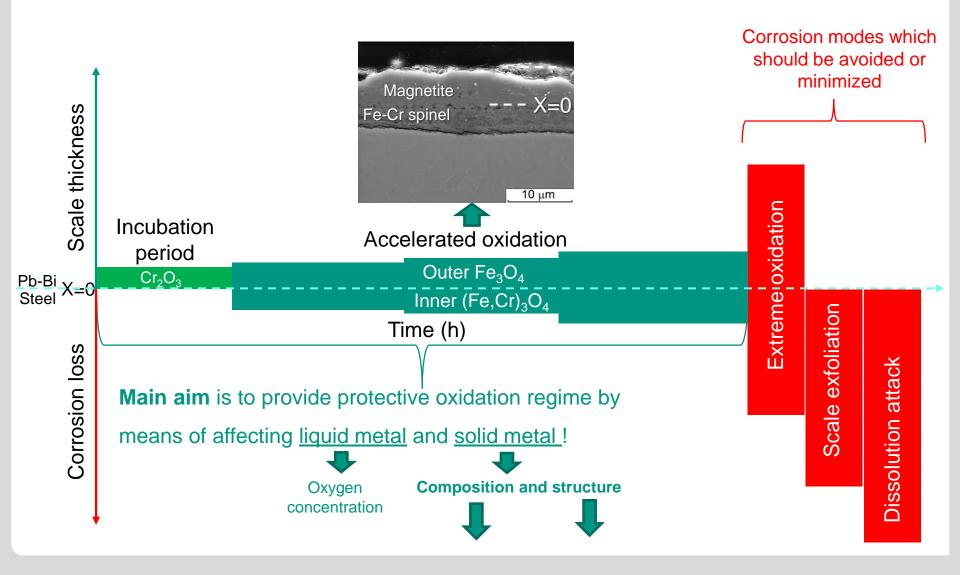







1 and 2 – austenitic steels of 316L type




- In general correct
- In particular too idealistic!

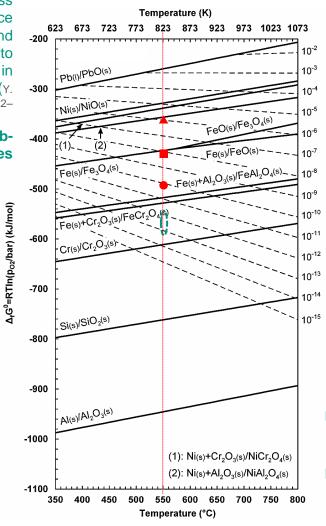


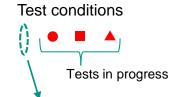
- Oxygen concentration in the bulk of the liquid metal --
- In the oxide-protection regime the failure of scale might result in local and severe solution-based corrosion attack instead of expected re-oxidation of steel surface!
- Local solution-based attack is a critical factor affecting corrosion resistance of steels in Pb-Bi !!!

## Developing of the scale on the surface of steels contacting Pb and Pb-Bi

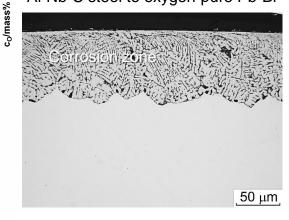





### **ALUMINUM-ALLOYED AUSTENITIC STEELS**




□ Improvement of oxidation resistance by means of formation of protective oxide films on the base of elements with higher affinity to oxygen (Al, Cr, Si) than Fe – one of the ways towards development of liquid-metal technologies;

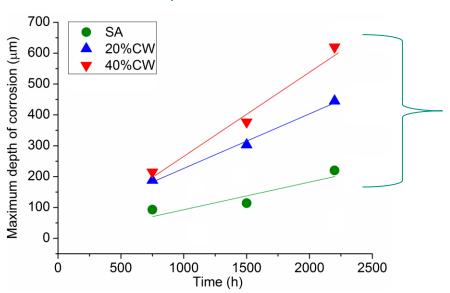

- Alumina-Forming Austenitic (AFA) stainless steels with improved creep resistance (strengthening with Laves phases and carbides) and oxidation resistance due to formation of Al<sub>2</sub>O<sub>3</sub> at high temperatures in gaseous media are under developing (Y. Yamamoto et al., Metall and Mat Trans A 42 (2011) 922–931);
- □ Applicability of AFA steels in Pb and Pb-Bi arouses interest and requires experimental investigations.

| Element | Fe-18Ni-12Cr-<br>Al-Nb-C |  |  |  |  |  |
|---------|--------------------------|--|--|--|--|--|
|         | ICP-OES                  |  |  |  |  |  |
| С       | 0.0086                   |  |  |  |  |  |
| Al      | 2.32                     |  |  |  |  |  |
| Si      | 0.401                    |  |  |  |  |  |
| Ti      | 0.0568                   |  |  |  |  |  |
| V       | 0.0048                   |  |  |  |  |  |
| Cr      | 11.7                     |  |  |  |  |  |
| Mn      | 0.0887                   |  |  |  |  |  |
| Fe      | 64.4                     |  |  |  |  |  |
| Ni      | 18.0                     |  |  |  |  |  |
| Cu      | 0.0031                   |  |  |  |  |  |
| Nb      | 0.577                    |  |  |  |  |  |
| Мо      | 1.99                     |  |  |  |  |  |
| W       | 0.0031                   |  |  |  |  |  |

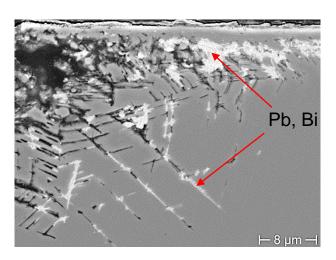




Corrosion response of Fe-18Ni-12Cr-Al-Nb-C steel to oxygen-pure Pb-Bi




- Protective Al<sub>2</sub>O<sub>3</sub> layer is not formed *in-situ* on AFA steel in Pb-Bi eutectic with 10<sup>-12</sup> mass%O;
- Spongy ferrite corrosion layer penetrated by Pb and Bi is observed.


## Correlation between initial structure and solution-based corrosion attack







#### Corrosion appearance

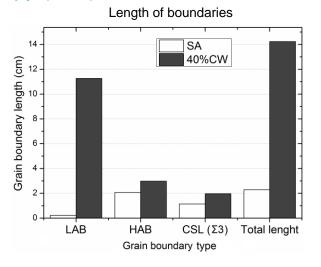


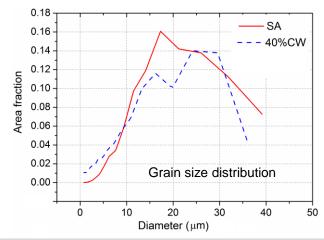
- Corrosion rate via dissolution increases with increasing of cold-work level in steel
- Pre-existing active diffusion paths (grain or sub-grain boundaries and deformation slips and twins etc.) are preferential pathways for solution-based attack via selective leaching of Ni and Cr and subsequent penetration of Pb and Bi into steel matrix

## Effect of structural state of steels on the corrosion response to liquid metals



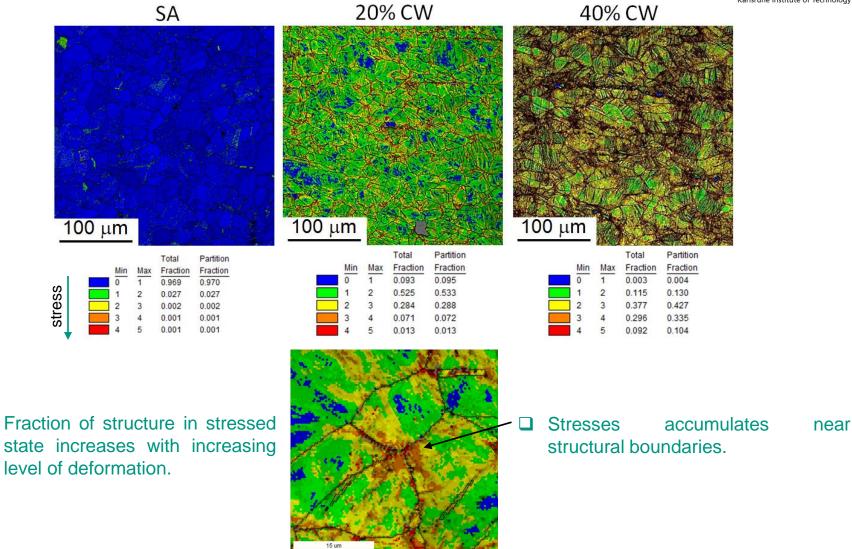
Scanning Electron Microscopy based Electron Back Scatter Diffraction (SEM-EBSD) / Orientation-Imaging Microscopy (OIM).


Grain-boundary character distribution in 1.4970 steel (Fe-15Ni-15Cr)


Solution annealed After 40% cold work

100 μm

(a) (b)


- □ Black lines High-Angle Boundaries (HAB ≤ 15°);
- Red lines Low-Angle Boundaries (LAB ≤ 15°);
- $\square$  Blue lines Special Coincidence Site Lattice Boundaries ( $\Sigma$ 3).





## Accumulation of stresses in steel depending on the level of cold-work





☐ The larger fraction of stressed structural boundaries in steel the higher corrosion rate via dissolution

#### SUMMARY



- Corrosion phenomena in steel / liquid Pb-Bi are understandable in general
- Application of oxygen-control system, allowing precise control of oxygen activity in Pb melts, is aimed to form protective oxide scale on the steel surface and mitigate corrosion via dissolution of steel constituents
- Reliable experimental data on corrosion of candidate steels are still scarce:
  - Oxidation of candidate steels depending on the oxygen concentration and temperature;
  - Dissolution of candidate steels depending on the oxygen concentration and temperature;
- ☐ Large number of required experimental data on corrosion stimulates collaboration among scientific groups around the world!

26



Example of severe corrosion attack on austenitic steel in Pb-Bi

Victory would go to those who could best operate at higher temperatures!