

European Commission funded International Workshop "Materials resistant to extreme conditions for future energy systems" 12-14 June 2017, Kyiv - Ukraine

CORROSION ISSUES IN STEELS CONTACTING Pb-Bi EUTECTIC AT HIGH TEMPERATURES – OVERVIEW OF KIT ACTIVITY

Valentyn Tsisar, Carsten Schroer, Olaf Wedemeyer, Aleksandr Skrypnik, Jürgen Konys

Candidate liquid-metal media for Fusion and Fission reactors

- Good nuclear and thermal-physical properties
- \Box High thermal efficiency
- \Box High boiling temperatures
- \Box Wide range between melting and boiling temperatures
- \Box Low vapor pressure
- \Box High heat transfer coefficient

Interaction between solid and liquid metals

Dissolution - basic interaction phenomenon !

- **Fail in bond among atoms in solid metal;**
- **Bonding of dissolved atom with atoms of liquid metal.**

Dissolution process is characterized by:

- 1. SOLUBILITY saturation concentration of solid metal in liquid one;
- 2. CONSTANT of DISSOLUTION RATE.

Dissolution rate is expressed by Nernst equation: $dCv/dt = \alpha \cdot (S / V) \cdot (C_{\text{sat}} \cdot CV)$;

Cv – concentration of dissolved metal in liquid metal;

Csat – saturation concentration of solid metal in liquid metal;

t – time;

α – constant of dissolution rate;

S - surface area of solid metal contacting with liquid metal $(cm²)$;

V - liquid metal volume (cm³).

Kinetic equation of dissolution:

*Cv = Csat · [1-exp (-(α·S/V)·*t*)]*

Constant of dissolution rate*:*

α = ln [Csat / Csat - Cv] · V / S ·^t

Solubility of Fe, Cr and Ni as a pure metals in liquid Li, Pb and Pb-Bi

Temperature dependence of dissolution:

log C (wt.%) = A – B / T;

T – temperature (*K*); A and B - constants

 The solubility of Fe, Cr and Ni in melts (corrosion aggressiveness of liquid metals) increases in the following sequence: $Li \rightarrow Pb \rightarrow Pb$ -Bi.

Lyublinski et al., JNM 224 (1995) 288;

http://www.nea.fr/html/science/reports/2007/nea6195-handbook.html.

Solution-based corrosion modes

Leaching of steel constituents by liquid metal

Selective leaching

(a) Solution-based attack is controlled by the Cr diffusion in the near surface layer of steel;

(b, c) Solution-based attack is controlled by the diffusion in boundary layer of liquid metal. (C)

Liquid metal corrosion - background

Issue !

- \Box Dissolution of Ni, Cr and Fe from the steel by liquid metal:
- Formation of week corrosion zone with ferrite structure on austenitic matrix
- Liquid metal penetrates into the ferrite

Solution !?

□ Oxidation instead of dissolution:

- Formation of continuous and protective oxide layer
- **EXEC** Long-term operation of scale in protective mode

Thermodynamic basis for *in-situ* **addition of oxygen into liquid Pb-Bi eutectic** Karlsruhe Institute of

Free energy of formation of oxides (solid lines) and Pb-Bi[O] solutions (dashed lines)

- Pb-Bi dissolves and transports oxygen;
- □ Components of steels (Si, Cr, Fe...) have high affinity to oxygen than Pb or Bi.

Oxidation of steel surface instead of dissolution of steel constituents by liquid metal

Oxidation of steels in Pb, Pb-Bi melts

- **Q** Bi-layer scale, with outer $Fe₃O₄$ (magnetite spinel) and inner $Fe(Fe, Cr)₂O₄$ spinel-type oxide layers, typically forms on the surface of steels in contact with oxygen-containing Pb and Pb-Bi melts
- \Box Growth of scale is governed by the outward diffusion of iron cations
- \Box Inward growth of Fe-Cr spinel at the oxide / steel interface could be accessed from the dissociative growth theory: vacancies generated by outward diffusion of iron cations precipitate at the oxide/steel interface forming cavities (pores) into which the oxide dissociates with evaporating oxygen providing further oxidation of steel (S. Mrowec, Corrosion Science 7 (1967) 563-578).

Activity towards successful application of liquid metal technologies

 Principal understanding of corrosion phenomena taking place in the steel / Heavy Liquid Metals system does not free from the experimental determination of the optimal temperature – oxygen concentration range.

- **Main aim** of the corrosion tests **is to determine the optimum temperature-oxygen concentration parameters** for save and long-term operation of structural materials in contact with liquid Pb and Pb-Bi eutectic.
- **The reliable quantitative data on corrosion loss** based on the long-run tests performed **in liquid metals with controlled oxygen concentration** are still very scarce up to date.

CORRosion **I**n **D**ynamic lead **A**lloys **CORRIDA** Pb-Bi eutectic liquid-metal loop

The CORRIDA facility – a forced-convection loop made of austenitic stainless steel (1.4571) designed to expose material (steel) specimens to flowing (2 m/s) Pb-Bi eutectic (~1000 kg) with controlled oxygen concentration.

10 European Commission funded International Workshop "Materials resistant to extreme conditions for future energy systems", 12-14 June 2017, Kyiv - Ukraine

Gas/liquid oxygen-control system

Measured oxygen potential/concentration as a function of operating time

Conditions of corrosion tests performed for period from 2012 to 2016 years

Effective operating time of CORRIDA loop (h)

Flow velocity 2 m/s

Target oxygen concentration in Pb-Bi = 10^{-7} mass%

T = 550°C

excursion to 10^{-4} –10⁻⁵ mass%O

t = 288; 715; 1007; 2011 h

T = 450°C

excursion to 10–5 mass% O

t = 500; 1007; 1925; 2015; 3749; 5015; 8766 h

\Box T = 400 $^{\circ}$ C

t = 1007; 2015; 4746; 13194 h

Austenitic steels tested in the CORRIDA loop

1.4970 (15-15Ti) 316L

- $HV_{30} = 253$;
- Grain size ranged from 20 to 65 µm;
- **Intersecting deformation twins.**

- $HV_{30} = 132$;
- Grain size averaged 50 um (G 5.5);
- Annealing twins.

1.4571 (material of CORRIDA loop)

- $HV_{30} = 245$;
- **Fine-grained structure with grain** size averaged 15 um (G 9.5).

F/M steels tested in the CORRIDA loop

Concentration (in mass%) of alloying elements other than Fe

加

Nominally 9 mass% Cr

\mathbf{T}

Element besides Cr that improves oxidation resistance

Martensitic microstructure of F/M steels

Corrosion response of austenitic steels Flowing Pb-Bi (2 m/s), 10–7 mass% O, 400-550°C

- □ 10% of wall thinning for cladding tube corrosion criterion suggested for "steel / sodium" system;
- Corrosion limit for 450 μ m thick cladding tube made of 1.4970 steel is 45 μ m;
- \Box 550 and 450°C could not be a working temperatures in Pb-Bi with 10⁻⁷ mass% O;
- \Box At 400°C, corrosion limit for 1.4970 could be reached for about 33000 h (~4 years) that is probably within an appropriate time for life-time of cladding tube made of 1.4970 (15-15 Ti) steel.

Local corrosion depending on oxygen concentration in the Pb-Bi eutectic

Austenitic steel 316L

□ Local corrosion rate (linear law) increases with decreasing oxygen concentration at constant $T = 550^{\circ}$ C:

- 270 µm/year for 10-6 mass%O
- 560 µm/year for 10⁻⁷ mass%O

 \square Incubation time for initiation of dissolution attack decreases with decreasing oxygen concentration in Pb-Bi eutectic:

- \leq 300 h for 10⁻⁷ mass% \degree O
- ≤ 2000h for 10-6 mass%O

Corrosion loss on 9%Cr F/M steels in Flowing Pb-Bi (2 m/s), 10–7 mass% O, 400-550°C

In comparison to 450 or 550°C the impact of oxidation is significantly reduced at 400 °C;

Severe local dissolution attack, as a result of scale failure, occurs.

Example of oxide scale evolution with time Flowing Pb-Bi (2 m/s), 10–7 mass%O, 400°C

Initial steel / liquid Pb-Bi interface

- General corrosion trend is oxidation
- Degradation of scale with time results in initiation of dissolution attack
- **Re-healing of scale does not take place !**

Dissolution attack as a result of scale failure

Comparison of earlier findings and today's vision !

Developing of the scale on the surface of steels contacting Pb and Pb-Bi

ALUMINUM-ALLOYED AUSTENITIC STEELS

 \Box Improvement of oxidation resistance by means of formation of protective oxide films on the base of elements with higher affinity to oxygen (Al, Cr, Si) than Fe – one of the ways towards development of liquid-metal technologies;

- Alumina-Forming Austenitic (AFA) stainless steels with improved creep resistance (strengthening with Laves phases and carbides) and oxidation resistance due to formation of Al_2O_3 at high temperatures in gaseous media are under developing (Y. Yamamoto et al., Metall and Mat Trans A 42 (2011) 922– 931);
- **Applicability of AFA steels in Pb and Pb-Bi arouses interest and requires experimental investigations**.

- **D** Protective $\mathsf{Al}_2\mathsf{O}_3$ layer is not formed *in-situ* on AFA steel in Pb-Bi eutectic with 10-12 mass%O;
- **Q** Spongy ferrite corrosion layer penetrated by Pb and Bi is observed.

Correlation between initial structure and solution-based corrosion attack

- Corrosion rate via dissolution increases with increasing of cold-work level in steel
- Pre-existing active diffusion paths (grain or sub-grain boundaries and deformation slips and twins etc.) are preferential pathways for solution-based attack via selective leaching of Ni and Cr and subsequent penetration of Pb and Bi into steel matrix

Effect of structural state of steels on the corrosion response to liquid metals

Scanning **E**lectron **M**icroscopy based **E**lectron **B**ack **S**catter **D**iffraction (**SEM-EBSD**) / **O**rientation-**I**maging **M**icroscopy (**OIM**).

Black lines - High-Angle Boundaries (HAB ≤ 15°);

- Red lines Low-Angle Boundaries (LAB ≤ 15°);
- Blue lines Special Coincidence Site Lattice Boundaries (Σ3).

Accumulation of stresses in steel depending on the level of cold-work

The larger fraction of stressed structural boundaries in steel the higher corrosion rate via dissolution

SUMMARY

- **Corrosion phenomena in steel / liquid Pb-Bi are understandable in general**
- **Application of oxygen-control system, allowing precise control of oxygen activity in Pb melts, is aimed to form protective oxide scale on the steel surface and mitigate corrosion via dissolution of steel constituents**
- **Reliable experimental data on corrosion of candidate steels are still scarce:**
	- **Oxidation of candidate steels depending on the oxygen concentration and temperature;**
	- **Dissolution of candidate steels depending on the oxygen concentration and temperature;**
- **Large number of required experimental data on corrosion stimulates collaboration among scientific groups around the world !**

Thank you for attention !!!

Example of severe corrosion attack on austenitic steel in Pb-Bi

Victory would go to those who could best operate at higher temperatures !