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Austenitic stainless steels in nuclear power plants
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Severe irradiation 
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T: 300 – 380 ℃℃℃℃

Dose: up to 120 dpa after 60 years

Environment: primary water  
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Ageing of PWRs Internals

PWR water 155 bars, 288°C, 30ccH2/kgH20, 
2 ppm Li, 1000ppm B, O2 < 5 ppb, pH300°C ≈ 7

� Ageing issues related to lower Internals

� Hardening, uniform elongation, and fracture 
toughness decreases

� Creep under irradiation

� Swelling (risk)

� Radiation induced segregation, precipitation

� Irradiation assisted stress corrosion cracking 
(IASCC)

� Wear 
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Irradiation induced mechanical and microstructural 
modification

(MPa)
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Dose dependent mechanical behavior:

� Increasing yield strength

� Decreasing ductility

� Decreasing strain hardening capacity

In the literature:

� Single crystals: Patra and McDowell 

2012 (BCC), etc.

� Polycrystals: Barton et al. 2013 (BCC) …
[Pokor et al. (2004a)]

[Garner et al. (2004)]

Dislocations Frank loops Cavities

[Edwards et al. (2003)][Renault et al. (2010)]
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Ductile fracture of irradiated PWR’s Internals

PWR’s internals structures made of austenitic stainless steel (300 series) 

[Chopra & Rao (2011)]
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Strong decrease of fracture toughness with irradiation related (How?) 
to evolution of mechanical properties (due to irradiation defects).

Physical mechanisms ? -> Fractographics observations 
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Fractographics observations

Increasing dose 

Unirradiated
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Dimple fracture Dimple fracture Channel fractureNano-dimple fracture

[Little (1986), Neustroev and Garner (2009), Fish (1973) ]

Some characteristics of the ductile fracture

� Intragranular voids

� Decreasing dimple size with irradiation

� Potential nano-dimple fracture at high  

irradiation levels 

Dimple-type Transgranular Fracture Chanelling Fracture 
� At high doses
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Objectives and content

� Long-term objective:

� Develop theoretical and numerical tools to predict the evolution 
of fracture toughness with irradiation

Content of the present study:

� Experimental study of ductile fracture in FCC steels

� Modeling and simulation of ductile fracture of irradiated 
austenitic stainless steels involving intragranular voids

� Understanding how fracture mechanisms influence fracture 
toughness by FE simulations at micro-scale
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Void growth and coalescence 

Dimple-type  transgranular fracture : void growth and coalescence

o Initiation: Creation of voids in the material
o Growth: Enlargement of (non-interacting) voids
o Coalescence: Linkage of interacting adjacent voids
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Physical mechanisms involved in ductile fracture

For low to medium irradiation doses 

Ductile Fracture <-> Void growth and coalescence 

Old research topic (since the 60’s)-> Ductile fracture modeling

Pioneering modeling: McClintock (1968), Rice and Tracey (1969), Gurson (1977)

What may be different with irradiated stainless steel ? -> Open questions 
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Modeling of ductile fracture: general framework

From a porous material (of porosity f) to an effective (equivalent) material:  

To obtain the effective constitutive equations requires: 

o Experimental data
for void growth and coalescence
o Theoritical approach:
homogeneisation, limit analysis

for different void lengthscales (µm, nm)

o Numerical simulations
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Open questions for irradiated materials

Physical mechanisms of voids growth in irradiated materials?  

o Decrease of toughness with irradiation 
seems stronger than expected

� Hardening -> Jc x(2-4)       [Jc~ ασy x λ]
� Loss of strain hardening -> Jc/(5-10)

o Dimples (thus voids) are small !
� Grain-scale modeling
� Nano-voids -> size effects ? 

Effect of void size on physical mechanisms?  

[Pardoen,Acta Mater.2003]
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Open questions for irradiated materials

Physical mechanisms of voids growth in irradiated materials?  

o Decrease of toughness with irradiation 
seems stronger than expected

� Hardening -> Jc x(2-4)       [Jc~ ασy x λ]
� Loss of strain hardening -> Jc/(5-10)

o Dimples (thus voids) are small !
� Grain-scale modeling
� Nano-voids -> size effects ? 

Effect of void size on physical mechanisms?  
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Micro-void growth and coalescence in irradiated
materials

Experimental methodology: Micro-void growth and coalescence  

o Irradiated material: polycristalline pure copper
� Pure Cu-> FCC, Significant hardening with low dose
� Protons irradiation -> no residual radioactivity

o Model voids under uniaxial tension
� Focused-ion Beam (FIB) drilling of cylindrical holes…
� …in a tensile sample
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Micro-void growth and coalescence in irradiated
materials

Proton-irradiation of pure Cu plate
o Thin plate: 75 µm thickness
o 2MeV H+, low temperature
o Irradiation depth 20 µm, 0.02 dpa 

(surface)

Mechanical properties after irradiation
o Tensile test on partly-irradiated material

� Stress-strain curve of irradiated layer
o ∆σys=130MPa

Ion beam at Jannus Saclay
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Micro-void growth and coalescence in irradiated
materials

Proton-irradiation of pure Cu plate
o Thin plate: 75 µm thickness
o 2MeV H+, low temperature
o Irradiation depth, 0.02 dpa (surface)

Mechanical properties after irradiation
o Tensile test on partly-irradiated material

� Stress-strain curve of irradiated layer
o ∆σys=130MPa

Experimental set-up
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Micro-void growth and coalescence in irradiated
materials

Models voids
o FIB drilling of cylindrical holes
o 16 µm radius
o Two geometries
o … through tensile samples

Experimental setup and typical observations

o SEM measurements of void dimensions with applied strain
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Micro-void growth and coalescence in irradiated
materials

Experimental results

o Voids in irradiated material grow faster (and coalesce earlier)
o Experimental data in good agreement with:

� Finite-element simulations
� Analytical model (McClintock growth model)

o That account only for hardening (and lower strain hardening)
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Micro-void growth and coalescence in irradiated
materials

Experimental data on micro-void growth and coalescence indicates:

o Accelerated growth and coalescence on irradiated material…
o …well captured accounting only for macroscopic hardening

� No significant effect of strain localization (for low dose)  

for voids size larger than the grain size

On-going study: voids size lower than the grain size
o 304L stainless steel
o Unirradiated and Proton irradiated
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From Micro-void to nano-voids

o Study of µm voids growth and coalescence in irradiated materials is
relevant for ductile fracture modelling, but

o Nano-voids migth also be present as irradiation defects:
� e.g. in austenitic stainless steels PWR bolts

o What is the behavior of nanovoids under mechanical loading?
Small voids -> Hardening / Large voids -> Softening ? 
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Nano-void growth and coalescence in irradiated
materials

20
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Nano-void growth and coalescence in irradiated
materials

Experimental methodology: Nano-void growth (and coalescence)

o Irradiated material: SA 304L austenitic stainless steel
� Fe irradiation-> high dose -> swelling: Model nanoporous materials
� On tensile samples
� Nano-voids characterization before mechanical loading

o Nano-voids under uniaxial tension
� Tensile test on irradiated sample
� 300°C, ~30% strain
� Nano-voids characterization post-mechanical loading
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Nano-void growth and coalescence in irradiated
materials
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Nano-void growth and coalescence in irradiated
materials
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Nano-void growth and coalescence in irradiated
materials
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Nano-void growth and coalescence in irradiated
materials

Typical experimental observations after mechanical loading

o Elongation along tensile axis: ellipsoidal shapes
o TEM measurements (up to now…):

� Ratio a/b of the semi-axis of the plane projection of the ellipsoid…
� …in different grains (≠ crystallographic orientations)
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Nano-void growth and coalescence in irradiated
materials

Experimental and numerical (crystal plasticity) results for the mean ratio a/b 

o Differences (sligth) between different crystallographic orientations

o Good agreement with numerical simulations! Why?  

Tensile strain
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Nano-void growth and coalescence in irradiated
materials

Statistics of nano-voids aspect ratio after mechanical loading
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Modeling of ductile fracture

From a porous material (of porosity f) to an effective (equivalent) material:  

To obtain the effective constitutive equations requires: 

o Experimental data
for void growth and coalescence
o Theoritical approach:
homogeneisation, limit analysis

for different void lengthscales (µm, nm)

o Numerical simulations

28
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Modelling: Multi-scale approach

Polycrystal

with 

intragranular

voids

Voided

single crystal

Effective polycrystal

Effective 

single crystal

Fracture toughness

Post-irradiation hardening
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Multi-scale approach

�Needed tools

Voided 

single crystal

homogenization

Effective 

single crystal

� Constitutive model for irradiated FCC single crystals accounting for Frank 

loops 

� Yield function for single crystals containing voids including void growth 

and coalescence

Irradiation defects

(Frank loops)

Unirradiated

Single crystal

Irradiated

Single crystal
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Void growth and coalescence at micro-scale

->theoretical background: crystal plasticity

� FCC crystal

� Plasticity: dislocation motion

� Slip planes

� Slip directions

� 12 slip systems

� Schmid tensor 

� Schmid’s law:

Plastic slip is initiated when the 

resolved shear stress �� on a slip 

plane reaches a critical value ��
�
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Void growth and coalescence at micro-scale

->theoretical background: crystal plasticity

� Kinematics:

� Flow rule:

� Hardening rule

� Dislocation density

Deformation gradient:

Plastic strain rate:

with

[Kubin (2008)] 

Yield function:

Plastic slip rate:

Multiplication Annihilation

32
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Void growth and coalescence at micro-scale

->FE Unit cell simulations: problem setup

Homogeneous 

distribution of  voids
RVE

RVE: Representative Volume Element

Voided 

single crystal

Force
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Void growth and coalescence at micro-scale

->FE Unit cell simulations: numerical procedure

� Initial void volume fraction

� Periodic boundary conditions

� Axisymmetric loading

� Constant stress triaxiality

� Different crystal orientations

2����

	

	�

	�

[100]-[010]-[001]

110 - 1�10 - 001

111 - 2�11 - 01�1

210 - 1�20 - 001

1�25 - 12�1 - 210

	� 	� 		
 	�			� [111]

[100] [101]
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Void growth and coalescence at micro-scale

->Effect of crystal orientation

� Effect of crystal orientation on the 

evolution of void shape

� Two stages: growth and coalescence

� Significant effect of the crystal 

orientation on void growth rate at 

T=1

[100] � � �. � � � �. �����

[Ling et al. (2016)]
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Void growth and coalescence at micro-scale

->Effect of post-irradiation hardening

Hardening law

Frank loopsDislocations Unpinning term

[Han (2012)]

[Tanguy et al., Plasticity Conf., 2013]

Unpinning 

process

[Onimus (2003)]

[Robach (2003)]
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Void growth and coalescence at micro-scale

->Effect of post-irradiation hardening

� Void growth is accelerated after the 

irradiation.

� Higher void growth rate induced by 

more significant localization of plastic 

slip. ��� � � � �. �
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Void growth and coalescence at micro-scale

->conclusions

� Void growth rate depends on crystal orientation and the 

effect is more significant at lower stress triaxialities.

� This justifies the proposed approach for modeling ductile 

fracture at the scale of grain

� Void growth is accelerated after irradiation:

� This implies a decrease in fracture toughness after 

irradiation
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Porous single crystal plasticity model

->Yield surface of porous single crystals: homogenization

Effective grain

[Ling et al., IJP, 2016]

� �, ��, �
: heuristic parameters used to 
better represent the result of unit cell 
simulations

� �: void volume fraction

Yield function for single crystals containing voids [Han et al., 2013, IJSS 50]

� Extended to void growth and Finite strain in

( )fστs ,*

Definition of the effective scalar resolved shear stress (for each slip system s)
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Application of the porous model to polycrystals

�111 

�001 �110 

� 343 grains, 27 quadratic elements/grain
� Random distribution of grain orientation

� Initial void volume fraction 0.01
� Hardening law for the unirradiated steel

� Constant overall stress traxiality

� Local evolution of damage variable (porosity)     ?
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Application of the porous model to polycrystals

• Higher stress triaxiality increase void growth rate, leading to earlier 
softening.

• The basic effect of triaxiality on ductile damage is captured. 

! increases
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Application of the porous model to polycrystals
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Application of the porous model to polycrystals
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CONCLUSIONS

�A multi-scale approach for modeling intragranular ductile fracture of 
irradiated stainless steels.

�Unit cell simulations for studying void growth in single crystals:
�Capture well the effect of irradiation on growth rate

�The first porous single crystal plasticity model at finite strains 
incorporating hardening.
�The first simulations of ductile damage initiation and propagation in a 
polycrystal aggregate. 
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14-15 juin 2010

CONCLUSIONS

�Developed tools can be applied to describe ductile damage of others 
materials  as far as it is driven by growth an coalescence

�Potential applications: void growth in Zirconium alloy for fuel cladding, 
micro-crack growth in Ni based single crystal superalloys

45

turbine blades in jet 
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14-15 juin 2010

FUTURE WORK ON IRRADIATED STEELS

� Enhancement of the crystal plasticity model to describe size 
effect (On-going work)

� Investigate the effect of deformation channels 
� growth and coalescence of micro and
nanovoids
� Nucleation of voids

� Refined the yield criterion for porous crystal in the coalescence 
regime

� Prediction of  the evolution of the fracture toughness of 
irradiated austenitic stainless steels 

[Byun et al. 2006]
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