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Wear is Extreme

The process of surface damage and eventual material degradation

Wear in a shaft bearing

Surface damage

Wear debris

Farias et al (2007) Wear, Kotzalas and Doll (2010) Phil. Trans. R. Soc. A




Wear is Extreme

The process of surface damage and eventual material degradation

Wear debris
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Wear importance in energy systems

A major source of materials and energy loss

with serious economic, environmental and industrial impacts.



Wear importance in energy systems

A major source of materials and energy loss

with serious economic, environmental and industrial impacts.

Vestas Wind Turbine Collapse
Hornslet, Denmark (2008)

Cause: wear in brake system




Archard’s wear law (1953)

N XS
H o

V=K

@ ¢

Wear coefficient: (10%° - 1) e
. : e
The probability of particle detachment S

J.F. Archard (1953) JAP



Number of articles

Archard’s wear law (1953)

N XS N
V=K -
o« o OOO
Wear coefficient: (107 - 1) 300
‘7. . ‘3?2‘,".
The probability of particle detachment S
500 J.F. Archard (1953) JAP

Bl Experimental studies (9447)
100 4| & Numerical studies (FEM+MD) (179)

300 1

100 A

0 - ‘ ™ S 011
1950 1960 1970 1980 1990 2000 2010 2020

Year 4



Archard’s wear law (1953)

N XS
V=K e, O

Wear coefficient: (10%° - 1) e
The probability of particle detachment S

Bl Experimental studies (9447)
100 4| & Numerical studies (FEM+MD) (179)

300 1

Debris

200 A particle \

Friction

Number of articles

Fracture

100 - " Plasticity

Subsurface cracks

0 - ‘ ™ S 011
1950 1960 1970 1980 1990 2000 2010 2020

Year 4



Archard’s wear law (1953)
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Archard (1953) JAP, Archard and Hirst (1957)




Wear Experiments vs. Simulations

Gradual plastic smoothing

Fracture-induced debris

Irregular surface
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Experiments

Bhaskaran et al., (2010) Nat. Nanotech

Liu et al.,(2010) ACS Nano Chung and Kim, (2014) Tri. Let.

Vahdat et al., (2013) ACS Nano




Wear Experiments vs. Simulations

" Gradual plastic smoothing Fracture-induced debris
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Wear Experiments vs. Simulations

Experiments

Simulations

Gradual plastic smoothing

Bhaskaran et al., (2010) Nat. Nanotech
Vahdat et al., (2013) ACS Nano

Too complex for continuum approach

Fracture-induced debris

Irregular surface

due to fracture \

500 nm

Liu et al.,(2010) ACS Nano Chung and Kim, (2014) Tri. Let.

Gradual plastic smoothing

Stoyanov, et al., (2014) Acta Mat.




Rice (1972)

Plastic zone size
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Fracture at the atomic scale

Yield Strength (MPa)
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Model inter-atomic potential
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Idealized wear simulation

Constant pressure

Displacement +
Rigid atoms
Thermostat region
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Idealized wear simulation

Ductile potential

Gradual plastic smoothing



Idealized wear simulation

Ductile potential Brittle potential

Gradual plastic smoothing Fracture-induced debris
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Idealized wear simulation

Ductile potential Brittle potential
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Gradual plastic smoothing Fracture-induced debris
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Energy balance criterion

w11 = 211

Fracture-induced

Wag = 2722




Energy balance criterion
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Energy balance criterion

Wear transition occurs when:

Ead -+ Eel <=0

R Critical junction size

Energy
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Model vs. Simulations
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3D simulations

d<d* d>d*
Gradual plastic smoothing Fracture-induced debris
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~ 4 Million atoms

~ 10 Millions time-steps

~ 2 weeks of calculation on 240 processors
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Model vs. Experiments
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New mechanistic look at wear

A critical length scale controls wear mechanisms at the asperity level
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Aghababaei et al., (2016) Nat. Comm. 15




Summary and outlook

« A new methodology to simulate wear phenomena

» Acritical length scale controls adhesive wear mechanisms at the asperity
level

Revising empirical wear laws at different scale

Develop new physics-based wear models

R. Aghababaei et al, (2016) Critical length scale controls adhesive wear mechanisms,
Nature Communications, 7, 11816.

R. Aghababaei et al, (2017) On the debris-level origins of adhesive wear: Did Archard get it
right?, appears in PNAS

Frerot (2017) Emergence of wear law: from single-asperity to multi-asperity, Submitted.



