erc

Council

Mechanics of surface damage:

A new look at the old problem of wear

Ramin Aghababaei

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Aarhus University, Denmark (from September)

Collaborators: J.-F. Molinary (EPFL) and D.W. Warner (Cornell)

Wear is Extreme

The process of surface damage and eventual material degradation

Wear in a shaft bearing

Farias et al (2007) Wear, Kotzalas and Doll (2010) Phil. Trans. R. Soc. A

Wear is Extreme

The process of surface damage and eventual material degradation

A major source of materials and energy loss

with serious *economic*, *environmental* and *industrial* impacts.

A major source of materials and energy loss

with serious *economic*, *environmental* and *industrial* impacts.

V=*K N*×*S H*

Wear coefficient: *(10-10 - 1) The probability of particle detachment*

Wear coefficient: *(10-10 - 1) The probability of particle detachment*

J.F. Archard (1953) *JAP*

V=*K N*×*S H*

Wear coefficient: *(10-10 - 1) The probability of particle detachment*

How and when do wear particles arise?

 Archard (1953) JAP, Archard and Hirst (1957)

Wear Experiments vs. Simulations

Wear Experiments vs. Simulations

ula

tio

ns

Too complex for continuum approach

Wear Experiments vs. Simulations

ns

5

Fracture at the atomic scale

 $\left(\frac{r_p}{r_p} \right)$ $r_p = \beta \frac{R_c}{\pi \sigma_y^2}$ Plastic zone size, Rice (1972)

Fracture at the atomic scale

6

Model inter-atomic potential

- Identical lattice structure
- Identical elastic properties
- Tunable inelastic properties

Aghababaei et al., (2016) Nat. Comm. *7*

Ductile **potential**

Gradual plastic smoothing

Ductile **potential** *Brittle* **potential**

Gradual plastic smoothing Tracture-induced debris

Ductile **potential** *Brittle* **potential**

Gradual plastic smoothing Tracture-induced debris

Energy balance criterion

10

Energy balance criterion

Energy balance criterion

Wear transition occurs when:

$$
E_{ad} + E_{el} \leq 0
$$

Critical junction size

Idealized case *(α=β=1)*

$$
\begin{cases}\n\lambda = 8/\pi & \text{in } 2D \\
\lambda = 3 & \text{in } 3D\n\end{cases}
$$

Model vs. Simulations

3D simulations

- ~ 4 Million atoms
- ~ 10 Millions time-steps
- ~ 2 w*eeks* of calculation on 240 processors

Model vs. Experiments

A *critical length scale* controls wear mechanisms at the asperity level

Empirical fitting Table 10 Mechanics of interfaces

Summary and outlook

- A new methodology to simulate wear phenomena
- A *critical length scale* controls adhesive wear mechanisms at the asperity level
- Revising empirical wear laws at different scale
- Develop new physics-based wear models

- R. Aghababaei et al, (2016) Critical length scale controls adhesive wear mechanisms, Nature Communications, 7, 11816.
- R. Aghababaei et al, (2017) On the debris-level origins of adhesive wear: Did Archard get it right?, appears in PNAS
- Frérot (2017) Emergence of wear law: from single-asperity to multi-asperity, Submitted.