Europear

Council

Mechanics of surface damage:

A new look at the old problem of wear

Ramin Aghababaei

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Aarhus University, Denmark (from September)

Collaborators: J.-F. Molinary (EPFL) and D.W. Warner (Cornell)

Wear is Extreme

The process of surface damage and eventual material degradation

Wear in a shaft bearing

Farias et al (2007) Wear, Kotzalas and Doll (2010) Phil. Trans. R. Soc. A

Wear is Extreme

The process of surface damage and eventual material degradation

A major source of materials and energy loss

with serious economic, environmental and industrial impacts.

A major source of materials and energy loss

with serious economic, environmental and industrial impacts.

 $V = \frac{K \times S}{H}$

Wear coefficient: (10⁻¹⁰ - 1) The probability of particle detachment

Wear coefficient: (10⁻¹⁰ - 1) The probability of particle detachment

J.F. Archard (1953) JAP

 $V = \frac{K \times S}{H}$

Wear coefficient: (10⁻¹⁰ - 1) The probability of particle detachment

How and when do wear particles arise?

Archard (1953) JAP, Archard and Hirst (1957)

Wear Experiments vs. Simulations

Wear Experiments vs. Simulations

Simulations

Too complex for continuum approach

5

Wear Experiments vs. Simulations

Simulations

Fracture at the atomic scale

Fracture at the atomic scale

Model inter-atomic potential

 Identical lattice structure Brittle Ξ $\mathbf{0}$ Potential energy Hard Identical elastic properties Ductile -0.5Soft Tunable inelastic properties 0.81.21.41.61.81 r/r_0 **Fracture Toughness** Hardness 5 F4.5 (crack blunting) (cleavage cracking) Contact pressure (ϵ/r_o^3) A 3.5 3 2.5 2 1.5 0.5 0 0 5 10 15 20 25 30 35 Indentation Depth (r_{o})

Aghababaei et al., (2016) Nat. Comm.

Ductile potential

Gradual plastic smoothing

Ductile potential

Brittle potential

Gradual plastic smoothing

Fracture-induced debris

Ductile potential

Brittle potential

Gradual plastic smoothing

Fracture-induced debris

Energy balance criterion

Energy balance criterion

11

Energy balance criterion

Wear transition occurs when:

$$E_{ad} + E_{el} <= 0$$

Critical junction size

Idealized case ($\alpha = \beta = 1$)

$$\left\{egin{array}{ll} \lambda=8/\pi & \mbox{in 2D} \end{array}
ight\}$$
 $\lambda=3 & \mbox{in 3D} \end{array}
ight)$

Model vs. Simulations

12

3D simulations

- ~ 4 Million atoms
- ~ 10 Millions time-steps
- ~ 2 weeks of calculation on 240 processors

Model vs. Experiments

A *critical length scale* controls wear mechanisms at the asperity level

Empirical fitting Mechanics of interfaces

Summary and outlook

- A new methodology to simulate wear phenomena
- A critical length scale controls adhesive wear mechanisms at the asperity level
- Revising empirical wear laws at different scale
- Develop new physics-based wear models

- R. Aghababaei et al, (2016) Critical length scale controls adhesive wear mechanisms, Nature Communications, 7, 11816.
- R. Aghababaei et al, (2017) On the debris-level origins of adhesive wear: Did Archard get it right?, appears in PNAS
- Frérot (2017) Emergence of wear law: from single-asperity to multi-asperity, Submitted.