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Wear is Extreme

The process of surface damage and eventual material degradation

Farias et al (2007) Wear, Kotzalas and Doll (2010) Phil. Trans. R. Soc. A
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A major source of materials and energy loss

with serious economic, environmental and industrial impacts.

Wear importance in energy systems
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  Cause: wear in brake system

Vestas Wind Turbine Collapse 
Hornslet, Denmark (2008)  
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How and when do wear particles arise?

                                                       Archard (1953) JAP, Archard and Hirst (1957)
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Si

Kim and Falk (2010) PRB
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● Identical lattice structure

● Identical elastic properties

● Tunable inelastic properties
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Gradual plastic smoothing
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~ 4 Million atoms
~ 10 Millions time-steps
~ 2 weeks of calculation on 240 processors
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3D simulations
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A critical length scale controls wear mechanisms at the asperity level
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Aghababaei et al., (2016) Nat. Comm. 15

New mechanistic look at wear



  

Summary and outlook

● A new methodology to simulate wear phenomena

● A critical length scale controls adhesive wear mechanisms at the asperity 
level

● Revising empirical wear laws at different scale

● Develop new physics-based wear models

● R. Aghababaei et al, (2016) Critical length scale controls adhesive wear mechanisms, 
Nature Communications, 7, 11816. 

● R. Aghababaei et al, (2017) On the debris-level origins of adhesive wear: Did Archard get it 
right?, appears in PNAS

● Frérot (2017) Emergence of wear law: from single-asperity to multi-asperity, Submitted.


