#### DE LA RECHERCHE À L'INDUSTRIE

# <u>Ceaden</u>

Part of this work was supported by
the joint program "CPR ODISSEE" funded by AREVA, CEA, CNRS, EDF and Mécachrome under contract n° 070551.

- EERA-JPNM Matisse/Mefisto
- IREMEV, Eurofusion

### Statistical physics for the modeling of non-equilibrium metallic alloys driven by irradiation

Thomas Schuler1,2, Luca Messina1,3, Frédéric Soisson1, Pär Olsson3, <u>Maylise</u> <u>Nastar</u>1

1CEA/SRMP, France 2Ecole Mines St Etienne, France 3KTH, Stockholm, Sweden

European Comission funded Enlargement workshop, KYIV, June 2017,



Swelling, deformation, degradation of corrosion resistance and mechanical properties

## Ceaden

## Flux coupling



Mechanism of radiation induced segregation:

- ✓ Point defect (PD) driving force: elimination of PD at sinks
- ✓ Flux coupling between PD and atoms

Other phenomena involving a net flow of vacancies and potential flux couplings: Quenching, diffusion creep, sintering, carburization, oxidation, nitruration, etc.

## Ceaden Solute clustering/dissociation



#### Mechanisms of solute clustering

✓ Point defect driving force:
 clustering of PD (cavity, dislocation loop,
 C15, etc.) + Solute segregation due to flux
 coupling

✓ Solute driving force:
 Phase transformation and formation of a new phase

#### Mechanisms of precipitate dissolution

- Dynamic phase diagram
- Ballistic mixing



## Outline

- **1.** Dynamic Phase Diagram of Fe(C,N,O)
- a) Vacancy-solute cluster binding energies
- b) Solubility limits with respect to vacancy supersaturation
- c) Vacancy induced dissolution versus ballistic mixing

#### 2. Radiation Induced Segregation in Fe(X) (X=C,N,O,metal)

a) Vacancy-solute cluster transport coefficients

b) A multi-scale computation of the phenomenological coefficients Lijs

c) RIS in Fe(X=C,N,O or a transition metal) alloys





DFT calculations suggest strong binding energies between X and V

|  | Ebt(V-X) (eV)       |             |
|--|---------------------|-------------|
|  | <i>X</i> = <i>C</i> | 0,41 - 0,65 |
|  | X = N               | 0,71 - 0,92 |
|  | X = 0               | 1,41 – 1,69 |

[Domain04;Fu08;Paxton13; Först06;Jourdan11; Ohnuma09;Fu07;Jiang09]





Ebt(VC2)=1.18

Ebt(VO2)=3 eV

### eV

Concentration of mixed point defect-interstitial clusters might be large

### Dynamic solubility limit from a constrained chemical potential vstem <u>Solute chemical potential μX</u>

#### Two phase system

**Ceaden** 

Fe solid solution

Ordered compound FepXq

(infinite reservoir of X)

\*T. Schuler, M. Nastar & F. Soisson, PRB 95 (2017) 014113

#### Average solute energy in a given phase

$$\mu_X \sim E\left[X\epsilon \text{Fe}\right] - E\left[X\epsilon \text{Fe}_{\text{p}} X_{\text{q}}\right]$$

Function of the supersaturation [V] and Cluster binding free energies The ordered compound is assumed perfect. E=constant, deduced from thermodynamic database.

### Shift of the solubility limit



### From binding energies to cluster concentrations



Statistical physics to average over various clusters and

cluster configurations:



## **Dynamic solute solubility limit of C** under irradiation

Irradiation modeled by a constant vacancy supersaturation

(steady-state and local equilibrium asumption)



- Good agreement with
   AKMC simulations
- ✓ At low [V], the solubility limit is the equil. one
- Iinear trend of d
   because a single
   cluster dominates

\*T. Schuler et al., PRB 95 (2017) 014113

### Dynamic solute solubility limit of N & O under irradiation



\*T. Schuler et al. RB 95 (2017) 014113

**Ceaden** 

### Radiation induced dissolution of oxide in Fe(O)



Equilibrium phase diagram

Ceaden

- Balistic mixing is dominant at low T and high flux
- ✓ Vacancy induced dissolution
   Is dominant at intermediate flux and T
- This mechanism should be considered in ODS steels



### Flux coupling between interstitials and vacancy

sign and amplitude of the flux coupling? Fe solid solution or p  $\Box \qquad J_x = -L_{xv} \nabla \mu_v - L_{xx} \nabla \mu_x$  $\bigcirc$  $J_{v} = -L_{vv} \nabla \mu_{v} - L_{xv} \nabla \mu_{x}$ Lij from the atomic jump frequencies Ordered compound FepXq

Ceaden

Computation based on the SCMF theory

### Cluster transport coefficients Computed using the automated code KineCluE





\*T. Schuler at al., DIMAT 2017 - Haifa, Israel



\*T. Schuler at al., DIMAT 2017 - Haifa, Israel

### **Total transport coefficients**

Ceaden



Cluster distributions + cluster transport coefficients:



\*T. Schuler at al., DIMAT 2017 - Haifa, Israel

Ceaden

### Flux coupling including paires VX

\*T. Schuler & M. Nastar, PRB 93 (2016), 224101



## Vacancy flux coupling in Fe(X)







## Vacancy flux coupling in Fe(X)





\*L. Messina et al., Phys. Rev. B 90, 104203 (2014).

### Assessment of the predicted solute drag in ferritic steels

#### Minor element segregation in T91

\*J.P. Wharry, G.S. Was, JNM 442 (2013) 7-16



- Enrichment of Ni, Si, Cu at grain-boundaries observed in T91 steels conforts the predicted solute drag by vacancy in the binary model alloys Fe (X = Ni,Si,Cu).
- Solute drag by vacancy might contribute to the formation of blooming phases (Cr,Ni,Si,P).

#### DE LA RECHERCHE À L'INDUSTRI

## Systematic analysis of vacancy drag



- Extension to all transition-metal impurities.
- Identified common trends for wide range of properties.
- Impurity diffusion and flux coupling linked to electronic interactions between iron, impurities, and vacancies.
- Drag for all impurities! Even with repulsive solutevacancy interactions.
- Electronic origin might suggest similar trends in \*L. Messina et al. PRB (2016)



### ✓ **Dynamic Phase Diagrams of Fe-C, Fe-N and Fe-O**

- <sup>o</sup> Large increase of the solubility limit induced by stationnary vacancy supersaturation
- VID is the dominant dissolution mechanism at intermediate irradiation flux and temperature against the ballistic mixing

### ✓ <u>RIS in Fe-based alloys</u>

0 Fe(C,O,N):

Positive flux coupling solute interstitials and vacancy except N at high T and C. Non monotenous variation with T and vacancy supersaturation

o Fe(substitutional X)

Vacancy: solute drag at T<700 °C except Cr and solute depletion at high T



# Thank you for your attention

This work was supported by

- the joint program "CPR ODISSEE" funded by AREVA, CEA, CNRS, EDF and Mécachrome under contract n° 070551.
- the Joint Programme on Nuclear Materials (JPNM) of the European Energy Research Alliance (EERA)
- The program IREMEV of the Euro-Fusion consortium