LA RECHERCHE À L'INDUSTRIE

ceaden

Part of this work was supported by o *the joint program "CPR ODISSEE" funded by AREVA, CEA, CNRS, EDF and Mécachrome under contract n° 070551.*

- o *EERA-JPNM Matisse/Mefisto*
- o *IREMEV, Eurofusion*

Statistical physics for the modeling of non-equilibrium metallic alloys driven by irradiation

Thomas Schuler1,2, Luca Messina1,3, Frédéric Soisson1, Pär Olsson3, Maylise Nastar1

1CEA/SRMP, France 2Ecole Mines St Etienne, France 3KTH, Stockholm, Sweden

> European Comission funded Enlargement workshop, KYIV, June 2017,

Swelling, deformation, degradation of corrosion resistance and mechanical properties

ceaden

Flux coupling

Mechanism of radiation induced segregation:

- \checkmark Point defect (PD) driving force: elimination of PD at sinks
- \checkmark Flux coupling between PD and atoms

Other phenomena involving a net flow of vacancies and potential flux couplings: Quenching, diffusion creep, sintering, carburization, oxidation, nitruration, etc.

Solute clustering/dissociation ceaden

Mechanisms of solute clustering

 \checkmark Point defect driving force: clustering of PD (cavity, dislocation loop, C15, etc.) + Solute segregation due to flux coupling

 Solute driving force: Phase transformation and formation of a new phase

Mechanisms of precipitate dissolution

- Dynamic phase diagram
- Ballistic mixing

Outline

- **1. Dynamic Phase Diagram of Fe(C,N,O)**
- a) Vacancy-solute cluster binding energies
- b) Solubility limits with respect to vacancy supersaturation
- c) Vacancy induced dissolution versus ballistic mixing

2. Radiation Induced Segregation in Fe(X) (X=C,N,O,metal)

a) Vacancy-solute cluster transport coefficients

b) A multi-scale computation of the phenomenological coefficients Lijs c) RIS in Fe(X=C,N,O or a transition metal) alloys

DFT calculations suggest strong binding energies between X and V

[Domain04;Fu08;Paxton13; Förs t06;Jourdan11; Ohnuma09;Fu07;Jiang09]

Ebt(VC2)=1.18

Ebt(VO2)=3 eV

eV

Concentration of mixed point defect-interstitial clusters might be large

Dynamic solubility limit from a constrained chemical potential Solute chemical potential μ X

Two phase system

ceaden

Fe solid solution **A** \bullet \blacksquare \mathbf{B} O $\mathsf{P}_{\!\mathsf{D}}$ \bullet

Ordered compound FepXq

(infinite reservoir of X)

*T. Schuler, M. Nastar & F. Soisson, PRB 95 (2017) 014113

Average solute energy in a given phase

$$
\mu_X \sim E[X\epsilon \text{Fe}] - E[X\epsilon \text{Fe}_p X_q]
$$

Function of the supersaturation [V] and Cluster binding free energies

The ordered compound is assumed perfect. E=constant, deduced from thermodynamic database.

Shift of the solubility limit

From binding energies to cluster raden **concentrations**

Statistical physics to average over various clusters and

cluster configurations:

Dynamic solute solubility limit of C ceaden **under irradiation**

Irradiation modeled by a constant vacancy supersaturation (steady-state and local equilibrium asumption)

- Good agreement with AKMC simulations
- \checkmark At low [V], the solubility limit is the equil. one
- linear trend of d because a single cluster dominates

*T. Schuler et al., PRB 95 (2017) 014113

Dynamic solute solubility limit of N & O under irradiation

*T. Schuler et al. RB 95 (2017) 014113

ceaden

Radiation induced dissolution of oxide in Fe(O)

Equilibrium phase diagram

ceaden

- Balistic mixing is dominant at low T and high flux
- \checkmark Vacancy induced dissolution Is dominant at intermediate flux and T
- This mechanism should be considered in ODS steels

ceaden Flux coupling between interstitials and vacancy

Ordered compound FepXq

Computation based on the SCMF theory

Cluster transport coefficients ceaden **Computed using the automated code KineCluE**

MINFS

**T. Schuler at al., DIMAT 2017 - Haifa, Israel*

**T. Schuler at al., DIMAT 2017 - Haifa, Israel*

Total transport coefficients

**T. Schuler at al., DIMAT 2017 - Haifa, Israel*

ceaden

ceaden

Flux coupling including paires VX

*T. Schuler & M. Nastar, PRB 93 (2016), 224101

Vacancy flux coupling in Fe(X)

Vacancy flux coupling in Fe(X)

*L. Messina et al., Phys. Rev. B **90**, 104203 (2014).

Assessment of the predicted solute drag Raden in ferritic steels

Minor element segregation in T91

*J.P. Wharry, G.S. Was, JNM 442 (2013) 7-16

- \checkmark Enrichment of Ni, Si, Cu at grain-boundaries observed in T91 steels conforts the predicted solute drag by vacancy in the binary model alloys Fe $(X = Ni, Si, Cu)$.
- \checkmark Solute drag by vacancy might contribute to the formation of blooming phases (Cr,Ni,Si,P).

Systematic analysis of vacancy drag

- Extension to all transition-metal impurities. • Extension to all transition-metal impurities.
- Identified common trends for wide range of properties. • Identified common trends for wide range of properties.
- Impurity diffusion and flux mipunty uniusic
distinguished to electronic interactions between iron, impurities, D CLVVCCII IIUII, • Impurity diffusion and flux coupling linked to electronic interactions between iron, impurities, and vacancies.
- •
Drag for all impurities Even with repulsive solutevacancy interactions. • Drag for all impurities! Even with repulsive solutevacancy interactions.
- Electronic origin might suggest similar trends in other metals. **L. Messina et al. PRB (2016)* • Electronic origin might suggest similar trends in other metals.

Dynamic Phase Diagrams of Fe-C, Fe-N and Fe-O

- o Large increase of the solubility limit induced by stationnary vacancy supersaturation
- o VID is the dominant dissolution mechanism at intermediate irradiation flux and temperature against the ballistic mixing

RIS in Fe-based alloys

o Fe(C,O,N)**:**

Positive flux coupling solute interstitials and vacancy except N at high T and C. Non monotenous variation with T and vacancy supersaturation

o Fe(substitutional X)

Vacancy: solute drag at T<700 °C except Cr and solute depletion at high T

Thank you for your attention

This work was supported by

- the joint program "CPR ODISSEE" funded by AREVA, CEA, CNRS, EDF and Mécachrome under contract n° 070551.
- the Joint Programme on Nuclear Materials (JPNM) of the European Energy Research Alliance (EERA)
- The program IREMEV of the Euro-Fusion consortium