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Age  Distribution  of  Operating  
Nuclear  Power  Reactors 

2 

Source:The World Nuclear Industry Status Report 2016 

https://www.worldnuclearreport.org  
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 The aim of the report is to summarize the state 
of knowledge on the two key components of 
this issue, namely: 

• micromechanisms of radiation embrittlement 
of RPV metal with an emphasis on the high 
fluences; 

• modern approaches to RPV-lifetime prediction 
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Outline  of  presentation 
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Radiation defects 
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Microstructure  features  evolution  
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Loops can act as nucleation sites for 

the formation of atomic segregations. 

Subsequently, they can convert into 

precipitates. 

E. A. Marquis et al. Current Opinion in Solid State and Materials Science 17 (2013) 217-223. 
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Effect of Mn, Ni and Cu segregated around the 
dislocation loop on resistance to dislocation move 
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Stress–strain relationship corresponding to the interaction of  

 a0/2 [111] DLs of size 1.5 nm 

D. Terentyev,  X. Heb, G. Bonny, A. Bakaev, E. Zhurkin, L. Malerba  

Journal of Nuclear Materials 457(2015) 173-181 
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Radiation  hardening  as  a  collective  process 
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MD-simulation - details of the 

interaction of a dislocation with a 

separate obstacle. 

Dislocation dynamics – simulation of the 

stochastic process of interaction of 

dislocations with defects. 

D.J. Bacon, U.F. Kocks, R.O. Scattergood, Philos. Mag. 28 (1973) 1241–1263 

It is necessary to develop  advanced models of radiation hardening taking 

into account both the properties of individual defects, and the collective 

processes of interaction of a moving dislocation with a field of defects. 
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Phenomenological  approach  
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Debarberis L. et al. International Journal of  Pressure Vessels and Piping, 82 195-200. 
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Late blooming effect 

The ascertainment of differences in the regularities of radiation hardening in 

RPV-metals with a high and low (C < 0.05 - 0.07% Cu) content of copper is one 

of the important directions of activity in radiation materials science. 

       

     To date, the differences are often associated with the "late blooming effect" 

    Odette  suggested (~1998) the existence of “late blooming phases” (LBPs). 

     Main features: 

• they have a long incubation period;  
• they have rapid growth thereafter; 
• they should  be present  in large volume fractions at equilibrium.  

 

These phases should be formed at high fluence preferably in low-Cu steels, which 

contain significant amounts of Ni and Mn. 

Formation of this phase should result in sudden severe embrittlement, therefore, it  

can be dangerous for RPV under long time operation condition. 
 

10 

B. Radiguet et al., presented at “Longlife” Final International Workshop, 15-6 January 2014, Dresden (Germany).  

L. Malerba, “Longlife” Final International Workshop, Dresden, 15-6 Jan 2014. 

G. R. Odette and G. E. Lucas, Radiation Effects and Defects in Solids, 144 (1998) pp. 189-231 
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The predicted             for a CRP-dominated microstructure in a high Cu / medium Ni 

steel compared to a MNP-dominated microstructure in a low Cu / high Ni steel with the 

incubation fluence increased by a factor of 200. 

Y

G.R. ODETTE and G.E. LUCAS  Radiation Effects and Defects in Solids   

Volume 144, 1998 – Issue 1-4  

Late  blooming  phases 

Outstanding issues: 

 

•There are controversial viewpoints on 

the existence or not of “Blooming 

effect” and whether they are really 

“Blooming” or not.  

 

•For low-Cu steels it is not clear 

whether there is an incubation period. 
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Acceleration of radiation hardening of low-copper RPV steels 

12 

F. Bergner, A. Ulbricht and H.-W. Viehrig  Phil. Mag. Letters Vol. 89, No. 12, December 2009, 795–805 

“The example of the reference RPV steel JFL (forging) as well as the low irradiation temperature of 2550C 

indicates that the results obtained for JPB and JPC (plate) cannot be directly transferred to real operation 

conditions of RPVs. The practical implication of our result is rather to contribute to the specification of 

parameter fields defining conditions under which late blooming effect occurs or do not occur”. 

SANS 

Element C Si Mn S P Cr Ni Mo V Cu 

A533B cl.1 (JPB) 
(wt%) 

0.18 0.26 1.42 0.001 0.017 0.15 0.83 0.54 0.01 0.01 

A533B cl.1 (JPC) 
(wt%) 

0.18 0.27 1.45 0.002 0.007 0.15 0.81 0.54 0.01 0.01 
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(wt%) 
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An increase in number density 

of the Ni-, Si- and Mn-enriched  

nanoclusters in the base and 

weld metals with fluence takes 

place, but they are not “late” 

and not “blooming”. 

High-nickel WWER-1000 base (15Kh2NMFAA) and  
weld (12Kh2N2MAA) metal  

M.K. Miller et al Journal of Nuclear Materials 385 (2009) 615–622 

Element C Si Mn Cr Ni Cu S P V Mo 

Base metal 
(wt%) 

 
0.17 

 
0.29 

 
0.47 

 
2.24 

 
1.34 

 
0.05 

 
0.014 

 
0.009 

 
0.09 

 
0.51 

Weld metal 
(wt%) 

 
0.08 

 
0.26 

 
0.74 

 
1.80 

 
1.77 

 
0.07 

 
0.013 

 
0.006 

 
0.02 

 
0.64 
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Atomistic  simulation 

 Kinetic of formation of MNPs must follow the kinetic of formation 

of dislocation loops:  

• no sudden blooming is expected, but gradual accumulation of 

decorated loops with increasing dose;  

• the conventional distinction between matrix damage and 

precipitates becomes blurred. 

14 

Altstadt, E. (2014). LONGLIFE Final International  Workshop, Dresden, Germany. 

Lorenzo Malerba Longlife Final International Workshop, Dresden, 15-16 Jan 2014  

R. Ngayam-Happy, C.S. Becquart, C. Domain, L. Malerba, Journal of Nuclear Materials 426 (2012) 198.  

Z. Jiao, G.S. Was Acta 

Materialia 59 (2011) 4467-4481  
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Evolution  of  microstructure  of  WWER-1000 metal 
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Graphs are built according to the experimental evidence from:  

B. A. Gurovich, E. A. Kuleshova, Ya. I. Shtrombakh, D. Yu. Erak, A. A. Chernobaeva, O. O. Zabusov,  

Journal of Nuclear Materials 389 (2009) 490–496 
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Brittle  strength  of  irradiated  RPV  metal 

16 
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Non-hardening embrittlement 

17 

N.N. Alekseenko et al. Radiation damage of nuclear power plant pressure vessel steels,  

Illinois USA, La Grange Park, 1997. 
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Assessment  of non-hardening  mechanism  
contributions  into the ductile-to-brittle transition 

temperature shifts 

E. A. Kuleshova et al  Journal of Nuclear Materials, Volume 483, January 2017, Pages 1-12 

It is an artificial “way of” that doesn’t enable to determine the value of the brittle strength 

of irradiated metal and its dependence on the fluence and microstructure. 

 
Material 

Composition,  wt.% 

C Ni P Cu S Mn Si Cr Mo V 

Sv- 
10KhGNMAA 

0.06-
0.07 

1.61-
1.89 

0.005-
0.008 

0.03-
0.06 

0.007-
0.019 

0.81-
0.99 

0.29-
0.33 

1.72-
2.01 

0.58-
0.67 

0.01-
0.03 

 
State 

Fluence,  
1022,   
m-2 

Flux, 
1014,  

m-2 s-1 

Time,   
x 1000,   

h 

TK   , 
0C (%)  

Hardening  
mechanism 

Non-hardening  
mechanism 

TF , 
0C / (%)  

 
Thermal 

part, 0C (%) 
Radiation-
enhanced 

part, 0C (%) 

Initial --- --- 0 --- --- --- --- 

3d temperature set --- --- 125 23 --- --- --- 

Irradiation within SS 50 11 125 81 41 (51%) 23 (28%) 12 (15%) 

Almost half of the transition temperature shift can be caused by the non-hardening 

mechanism. 
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Multiscale  Local  approach  to  fracture 

19 
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1. radiation hardening; 
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Density  of  crack  nuclei 
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Prediction  of  the end-of-life  fluence  for 

the  reactor  pressure  vessel 

22 
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Radiation  
embrittlement  

micromechanism
s  

RPV   
life-time  

prediction 

T
ka

 

 

T
F

Radiation life time


c

T
ko

0

 

 

K
Un'

Ic

T
ka

K
I

K
Ir

Ic

T
ko T

F

Temperature, TF
ra

c
tu

re
  

to
u

g
h

n
e

s
s

, 
 K

J
C
 

K
Un

Ic

!? 

http://www.tms.org/pubs/journals/JOM/0107/fig1.gif


G.V. Kurdyumov  Institute  for  Metal  Physics,  NAS  of  Ukraine 

serkotr@gmail.com 24 

 

 

K
Un'

Ic

T
ka

K
I

K
Ir

Ic

T
ko

T
F

Temperature, T

F
ra

c
tu

re
  

to
u

g
h

n
e

s
s

, 
 K

J
C
 

K
Un

Ic

T
ka

 

 

T
F

End-of-life fluence

t
c

T
ko

0

RPV structural  integrity  assessment 

  31
0 FAT  CA 0BM

F 23   CAWM
F

020



G.V. Kurdyumov  Institute  for  Metal  Physics,  NAS  of  Ukraine 

serkotr@gmail.com 

Essence of the technique for brittle strength 
determination 

25 
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Radiation hardening and brittle strength reduction  
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Tests of surveillance specimens were performed in the Institute for Nuclear 

Researches by  Dr. V. Revka and Dr. L. Chyrko.  

.  

 Loading condition: 

JI/0.2= 0.0365 mm, KI ~70-75 MPa m0.5, T = +560C                          

F = 5%  failure probability 

Postulated  crack   

a = 25 mm, a/c = 1/3 
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Radiation  
embrittlement    

micromechanism
s  

RPV  
life-time 

prediction 
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Radiation-induced softening 
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In - situ tests 
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Method of torsional vibrations 

was used to measure shear 

modulus.  

 

Shear modulus during irradiation 

is lower than when irradiation is 

absent at the same values of 

fluence. 

 

This modulus decrease is fully 

reversible. 

E. Grynik, V. Karasev, Atomnaya Energiya 54 (1983) 177 (in Russian) 

Dependence of G at 5800C on fast neutron fluence (E>0.1 MeV) under in-situ 
irradiation  at  neutron  flux  of  1018  n/m2s  and  when  a  reactor  is  shutdown. 
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Radiation-induced softening (RIS)  
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,  

The dependence of the yield stress     , 

on the plastic strain    , of polycrystalline 

Al without irradiation at room 

temperature (the curve 1) and under 

electron irradiation (the curve 2). 

Electron energy           ,  

the beam pulse duration           ,  

the pulse frequency             , 

the mean electron flux  

0.5 eV 
610 s 

50 Hz 
17 -2 -15 10 e×m ×s 




V. I. Dubinko, P. A. Selyshchev, and J. F. R. Archilla, Phys. Rev. E 83 

(2011) No 4 

V. I. Dubinko,  A.N. Dovbnya, V. A. Kushnir, I. V. Khodak,  V.P. Lebedev, 

V.S. Krylovskiy, S.V. Lebedev, V.F. Klepikov, P. N. Ostapchuk,  Physics 

of the solid state 54 (2012) #12, p. 2442 

Slide courtesy of  Dr. V. Dubinko  
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Сalculated  hardening  of  Fe  due  to  dislocation  loop  

formation  under  different  neutron  fluxes  compared  to  the  

hardening  after  irradiation  at  neutron  flux  of  8 x 1018 m-2 s-1 

Slide courtesy of  Dr. V. Dubinko 
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Conclusions  and  Open Issues (OI) 
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1. In RPV steels, dislocation loops can be "fixed" by 

segregated atoms, therefore, when assessing radiation 

hardening, they should be considered as "strong obstacles“.  

2. In theoretical and experimental studies of MN precipitates, it 

is necessary to take into account the interrelation between 

the kinetics of their formation and the kinetics of formation 

of dislocation loops. 

OI. Development of advanced models of radiation hardening  

accounting for both the properties of individual defects and 

the collective processes of interaction of a moving 

dislocation with a field of defects. 
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Conclusions  and  Open Issues (OI) 
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3. Until now, there are controversial viewpoints on the  

existence or not of “Late blooming phases” and whether 

they a really “blooming” or not. 

     Increase in the number density of Ni-Si-Mn-enriched nano-

clusters was observed in WWER-1000 base metal and 

high-Ni weld metal, however, these clusters are neither 

“late” nor “blooming”. Therefore, accelerated radiation 

hardening should be considered as necessary, but not 

sufficient attribute of Late Blooming effect. 

OI. Critical analysis and identification of the conditions, at 

which unexpectedly severe hardening or embrittlement 

occurs. 
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Conclusions  and  Open Issues (OI) 
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4. Along with radiation hardening, decreasing in brittle 

strength under neutron irradiation has a significant effect 

on the radiation embrittlement of RPV steels. 

OI. Transition from purely engineering empirical methods of 

the RPV lifetime prediction to methods based on realistic 

physical models of radiation embrittlement of metal taking 

into account both radiation hardening and reduction in 

brittle strength.  

OI. Experimental verification of radiation-induced softening 

effect for RPV steels under neutron irradiation, and 

assessment of its effect on the service time of RPV. 
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WESTERN - Since  1970s, C phosphorus concentration maximum value of 
0.015% and, later, even lower values, in most Western countries (e.g. 
0.008% in France)  
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Local  approach  to  cleavage  fracture 
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Beremin F., Metallurgical Transactions, 1983  A 14, 2277-2287 

B.Z. Margolin, V.A. Shvetsova, A.G. Gulenko, V.I. Kostylev  
International Journal of Pressure Vessels and Piping 2007, 84  320–336 
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Tensile strength of smooth (unnotched) specimens 
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Relation  between  radiation  hardening  and 
microstructure  features  
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NdMGbY 

dNd
b

M
Y 


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8

810.

D. N. Seidman, E. A. Marquis, D. C. Dunand, Acta Materialia 50 (2002) 4021–4035 

Precipitate  shearing: 

 

1 

Lmax 

L /max 

“Orowan  mechanism”: 

α  is the obstacle strength  

N  is the number density 

d   is the diameter 
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Orowan  dependence  for  the  wide  range  of  
change in  fluences 
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Material – WWER-1000 WM (Ni=1.77%, Mn= 0.74%, Si=0.26%, Cu=0.07%, P=0.006%) 

B.A. Gurovich, E.A. Kuleshova, Ya.I. Shtrombakh, D.Yu. Erak, A.A. Chernobaeva , O.O. Zabusov 

Journal of Nuclear Materials 389 (2009) 490–496 
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Change  in  the  dominant  hardening  
micromechanism 
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