Micromechanical characterization of SiC-SiC fiber composite for accident tolerant fuel cladding applications

Yevhen Zayachuk¹, David E. J. Armstrong¹, Steve G. Roberts^{1,2}, Christian Deck³, Peter Hosemann⁴

Department of Materials, University of Oxford, UK Culham Centre for Fusion Energy, UK General Atomics, US Department of Nuclear Engineering, University of California, Berkeley, US

GENERAL ATOMICS

Background

- Fuel cladding \rightarrow zirconium alloys ("zircaloy").
- **Problem** \rightarrow loss-of-coolant accidents (LOCAs):
	- Zirconium reacts with water steam \rightarrow oxidizes, producing hydrogen.
	- Danger of explosion of the hydrogen-oxygen mixture.
- Concept of **accident-tolerant fuel (ATF)** \rightarrow SiC as a cladding material.
	- High-temperature strength.
	- Stability under irradiation.
	- *Reduced oxidation under accident conditions*.
- SiC \rightarrow ceramics \rightarrow brittle \rightarrow use in the form of a composite.
- Improved toughness by introduction of interphases:
	- SiC fibres *commercially available, Tyranno (Ube Industries)*.
	- Coated with pyrolytic carbon, weaved into a fabric-like structure – *General Atomics*.
	- SiC matrix grown on fibres by **chemical vapour infiltration** (CVI) method – *General Atomics*.

Background

• US Department of Energy Nuclear Energy University Programs (NEUP):

Developing a macro-scale SiC-cladding behaviour model based on localized mechanical and thermal property evaluation on pre- and post-irradiation SiC-SiC composites.

- Goal develop a **macroscopic** final element model based on **microscopic** properties.
- Measurements of local properties \rightarrow matrix, fibers and interphases \rightarrow correlated with microstructure.
- **Micromechanical study**:
	- Microcantilever testing;
	- Nanoindentation;
	- Fiber push-out.
- **Microstructural study**:
	- Scanning electron microscopy (SEM);
	- Transmission electron microscopy (TEM);
	- Energy-dispersive X-ray spectroscopy (EDX);
	- Electron backscatter diffraction (EBSD);
	- Transmission Kikuchi diffraction (TKD);
	- Selected area diffraction (SAED).

- Microstructure studied by TEM.
- FIB lift-out samples.

• Study of local microstructure \rightarrow interphases, fibers, matrix.

- Microstructure studied by TEM.
- FIB lift-out samples.

- Elongated grains in the matrix \rightarrow radial growth.
- Equiaxed grains in the fiber.
- Submicron-size porosity between the fibers.

- Dark areas at the grain boundaries in the fiber:
- *Depleted of Si.*
- *Enriched in C.*
- Probably graphite particles decorating the grains within the fibre material.

Nanoindentation

- Non-uniform hardness within the fiber.
- Correlated with the presence of excess C.
- Higher C content \rightarrow lower hardness.

Nanoindentation

- No difference in hardness values regardless of inter-indent distance.
- Very constrained plastic zone around indents.

- FIB-machined cantilevers.
- Triangular cross-section.
- Load applied with nanoindenter.
- Cantilevers at the interphase.
- Cantilevers in the fibers.
- Cantilevers in the matrix.

- Elongated grains in the matrix.
- Cantilevers in the matrix can be oriented parallel or perpendicular to the direction of grain growth.

- Load-displacement curves measured.
- Converted to stress-strain using simple beam theory.
- Interphase: Fracture stress – 2.3 GPa; Strain at fracture – 3.5%;
- Fiber: Fracture stress – 8 GPa; Strain at fracture – 6.7%;
- Matrix: Fracture stress – 21 GPa; Strain at fracture – 13%.

- Interphases are weak spots.
- Fibers intermediate \rightarrow weaker than matrix due to excess C?
- Matrix the strongest \rightarrow no systematic difference for different orientations.

Fracture close to fiber-interlayer boundary.

Transgranular and intergranular fracture in the fiber.

Transgranular fracture in the matrix.

Preliminary high-temperature data

• Hot nanoindenter – vacuum tests up to 700°C (possible extension to 900°C).

- At 600° C decrease of the matrix fracture load by a factor of \sim 3 compared to RT.
- Systematic study of temperature dependence, for fibers and interphases, underway.

Summary and outlook

- Complex microstructure:
	- Matrix material highly elongated grains, multi-level hierarchical structure.
	- Fiber material symmetrical grains, with carbon decorating grain boundaries.
	- Growth of matrix creates submicron-sized porosity.
- Micromechanical testing:
	- Cantilever fracture weak interphases, strong matrix, intermediate fiber.
	- Fracture close to fiber-interlayer boundary.
	- Nanoindentation fibers softer than matrix, correlates with the presence of carbon.

• Plans:

- Micromechanical testing at elevated temperature hot nanoindenter.
- Development of push-out testing.
- Orientation mapping.
- Micromechanical testing on irradiated samples (UC Berkeley).