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Background

• Fuel cladding zirconium alloys (“zircaloy”).

• Problem loss-of-coolant accidents (LOCAs):
• Zirconium reacts with water steam oxidizes, producing hydrogen.

• Danger of explosion of the hydrogen-oxygen mixture.

• Concept of accident-tolerant fuel (ATF) SiC as a cladding material.
• High-temperature strength.

• Stability under irradiation.

• Reduced oxidation under accident conditions.

• SiC ceramics brittle use in the form of a composite.
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• Improved toughness by introduction of
interphases:

• SiC fibres – commercially available, Tyranno
(Ube Industries).

• Coated with pyrolytic carbon, weaved into a
fabric-like structure – General Atomics.

• SiC matrix grown on fibres by chemical vapour
infiltration (CVI) method – General Atomics.



Background

• US Department of Energy Nuclear Energy University Programs (NEUP):

Developing a macro-scale SiC-cladding behaviour model based on localized
mechanical and thermal property evaluation on pre- and post-irradiation
SiC-SiC composites.

• Goal – develop a macroscopic final element model based on microscopic
properties.

• Measurements of local properties  matrix, fibers and interphases 
correlated with microstructure.
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• Microstructural study:
• Scanning electron microscopy (SEM);

• Transmission electron microscopy (TEM);

• Energy-dispersive X-ray spectroscopy (EDX);

• Electron backscatter diffraction (EBSD);

• Transmission Kikuchi diffraction (TKD);

• Selected area diffraction (SAED).

• Micromechanical study:
• Microcantilever testing;

• Nanoindentation;

• Fiber push-out.



Microstructure

• Mutually
perpendicular
fiber bundles.
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• Microstructure studied by TEM.

• FIB lift-out samples.

Microstructure

• Study of local microstructure interphases, fibers, matrix.



6

• Microstructure studied by TEM.

• FIB lift-out samples.

Microstructure

Matrix

Fiber

• Elongated grains in the matrix radial growth.

• Equiaxed grains in the fiber.

• Submicron-size porosity between the fibers.



Dark spots at the grain
boundaries in the fibers.

Microstructure
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• Dark areas at the grain boundaries in the fiber:
• Depleted of Si.
• Enriched in C.

• Probably graphite particles decorating the
grains within the fibre material.
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Nanoindentation
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• Non-uniform hardness within the fiber.

• Correlated with the presence of excess C.

• Higher C content lower hardness.
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Nanoindentation

• No difference in hardness values regardless of inter-indent distance.

• Very constrained plastic zone around indents.
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Microcantilever testing
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• FIB-machined cantilevers.
• Triangular cross-section.

• Load applied with nanoindenter.

• Cantilevers at the interphase.
• Cantilevers in the fibers.
• Cantilevers in the matrix.

Interphase Fiber Matrix



Microcantilever testing
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• Elongated grains in the matrix.

• Cantilevers in the matrix can be
oriented parallel or perpendicular
to the direction of grain growth.

Matrix – cantilevers
parallel to grains

Matrix – cantilevers
normal to grains
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Microcantilever testing

• Interphases are weak spots.
• Fibers intermediate weaker than matrix due to excess C?
• Matrix the strongest no systematic difference for different orientations.

Fiber
Matrix - normal to grains
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• Load-displacement curves measured.
• Converted to stress-strain using simple

beam theory.

• Interphase:
Fracture stress – 2.3 GPa;
Strain at fracture – 3.5%;

• Fiber:
Fracture stress – 8 GPa;
Strain at fracture – 6.7%;

• Matrix:
Fracture stress – 21 GPa;
Strain at fracture – 13%.



13

Microcantilever testing

TEM sample

Fiber Matrix

Crack
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SiC fiberSiC matrix

PyC
interlayer

Fracture close to fiber-interlayer boundary.

Microcantilever testing

Fiber

Transgranular and intergranular fracture in the fiber.
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Microcantilever testing

Matrix – cantilever
parallel to grains

Matrix – cantilever
normal to grains

Transgranular fracture in the matrix.



Preliminary high-temperature data
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• Hot nanoindenter – vacuum tests up to 700°C (possible extension to
900°C).
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• At 600°C – decrease of the matrix fracture load by a factor of ~3
compared to RT.

• Systematic study of temperature dependence, for fibers and
interphases, underway.



Summary and outlook

• Complex microstructure:
• Matrix material – highly elongated grains, multi-level hierarchical structure.

• Fiber material – symmetrical grains, with carbon decorating grain boundaries.

• Growth of matrix creates submicron-sized porosity.

• Micromechanical testing:
• Cantilever fracture – weak interphases, strong matrix, intermediate fiber.

• Fracture close to fiber-interlayer boundary.

• Nanoindentation – fibers softer than matrix, correlates with the presence of carbon.

• Plans:
• Micromechanical testing at elevated temperature – hot nanoindenter.

• Development of push-out testing.

• Orientation mapping.

• Micromechanical testing on irradiated samples (UC Berkeley).
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