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Abstract  

Fractal microelectronics is a new developing topic that uses fractal nature to 
improve understanding, analyzing and modeling processes and developing 
advantageous methods for energy producing, harvesting and storage. In this 
sense the new experimental-theoretical approach frame methodology is 
developed by the authors. It includes theoretical models of fractal dimension 
extraction, building computer models that simulate an energetic source 
phenomena being studied (energetic cells, solar collectors, wind turbines etc.). 
The most experiments were done on ceramics capacitors by direct measuring of 
impedance for given fractal characteristics. The concept design main goal is to 
predict performances of final products, and their optimization. Through this 
method and results, we are opening the Fractal microelectronic new frontiers 
and technological processes, especially specific intergranular relations within 
grains surfaces coatings and thin film’s fractal nature microelectronics. Since the 
fractal approach offers a coherence on the wide continuous metric scale from 
macro to micro world, even to nanoscale, it opens the new “window” for further 
development in achieving universality of relationship between forms and energy 
in the broad sense as well as miniaturization improvement.  
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Introduction 

Knowledge on morphology of ceramics grains and pores helps in sintering process to 

be better understood. Real intergrain contact surfaces as highly irregular objects can 

be described in only adequate way, by using fractal models. Both micro and 

nanostructure of grains’ shapes and intergranular contacts are easy to be reconstructed 

by fractal analysis/modelling. Here, several variations of the Coble’s two-sphere 

model, are reviewed. Further, the intergranular capacity model has been re-

investigated from the point of view of intergranular fractal formations. The area of 

grains’ surface is calculated using fractal correction and fractal dimension. This leads 

towards a more exact numerical description of ceramics electronics parameters and 

related properties.  

Especially, the role of dielectric constant, being corrected upon intergranular 

morphology fractal nature causes corrections in Heywang model and Curie-Weiss law.  

In order to obtain an equivalent circuit model, an intergranular contacts model for 

barium-titanate electrical properties characterization is determined and implemented. 

The improved material prognosis of electronic properties can be given on the basis of 

micro-nanostructure fractal relations. Considering the obtained results, the new 

frontiers for deeper and higher level electronics circuit microelectronic integration are 

established, which is, practically progress towards the new frame of fractal 

electronics. 
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The sintering process is characterized by an extreme complexity due to the 

simultaneous and successive action of elementary mechanisms. Generally speaking, it 

is very difficult to follow all those actions, and give their qualitative or quantitative 

descriptions [1-9].  

 



Ceramic grains contacts are essential for understanding complex electrodynamic 

properties of sintered materials. Microstructures of sintered BaTiO3-ceramics, 

observed by SEM method, are characteristic example of complex shape geometry, 

which cannot easily be described or modelled. In this manner, a possible approach for 

describing contact morphology has been established in the updated grains contact 

models. Some initial research [3, 4] of BaTiO3-ceramics intergranular contacts show 

that they have the great influence on electrical properties of the entire material. 

Intergranular contacts are formed during sintering process. When two particles of 

powder are sintered, they form a contact, while the interatomic forces start forming a 

particle’s neck in the contact area. When a powder aggregate is sintered, necks 

between powder particles are formed, which causes increment in material’s density. A 

common driving force of the transport mechanisms is the reduction in the surface area, 

and thus the reduction of surface free energy of the system which contributes to 

densification. In further process, a neck begins to grow and this process is controlled 

by different diffusion mechanisms (lattice diffusion, grain boundary diffusion etc.) 

with the rates determined by total flux of atoms coming to the neck.  5 



The aim of this presentation is to review models of three or more spherical grains in 

contact, as a base for calculating the values of possible contact areas in given geometry 

configuration. This matter is organized in two directions. First, the simulation of neck 

growth in time domain is done by combining results for contact surfaces’ values with 

the kinetics of forming three or more contact areas. Second, the model of three or more 

grains in contact is used for establishing an equivalent electrical model of such grains’ 

association. It is shown that BaTiO3 sample can be modelled as impedance containing 

two capacitors, an inductor and one resistor [7]. As a ceramics sample consists of 

numerous grains organized in clusters of different sizes, it could be supposed that each 

cluster and even each intergranular contact within the cluster, shows similar behaviour. 

The dominant contribution to the equivalent impedance within a wide frequency range 

comes from a capacitance [7]. So, any intergranular contact can be observed as an 

intergranular microcapacitor. On the base of these considerations, equivalent electrical 

models of three and four grain clusters are presented. All of these models and electrical 

contact surfaces processes are based on computer modelling and simulation methods 

application.  
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An extreme complexity of the sintering process influences the study of this process 

through different sintering models. Most of the sintering models have used two-sphere 

model as the simplest model for studying elementary mechanisms responsible for the 

progress of the sintering process. Such an idealization of the geometry of the sintering 

particles enables very detailed study of physical processes acting in the contact region. In 

this paper, Coble's two sphere model [1] is used as initial one for developing a new two-

ellipsoid model. Ellipsoidal geometry gives a more appropriate representation of an 

average grain than the spherical one. Namely, the specific energy and curvature of the 

particle surfaces provide an effective stress on the atoms under the surface defined by the 

Young-Laplace equation that uses two radii of curvature in a point of grain’s surface. The 

simplest surface with two different curvature radii is an ellipsoid. 

 

The relations connecting geometric parameters of the ellipsoidal model with 

consolidation parameters, sintering time and temperature are reformulated. For better 

understanding of intergranular processes, Coble's model was generalized for other 

possible geometric shapes (sphere-polyhedron, polyhedron-polyhedron). Then, the results 

of a new model are compared with those obtained from Coble's two-sphere model.  
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The sphere-sphere model 

 

In order to explain two grain contact during sintering process and better 

understanding of electrical properties of BaTiO3-ceramics, we start with the 

Coble’s model [1], Fig. 1. In the process of the diffusion in initial-stage 

sintering, two grains, approximated by spheres penetrated each other 

slightly. The volume that fills intersection of spheres (the distance between 

centres is smaller than a sum of two radii) transforms into a neck (a kind of 

collar circumscribing the contact area), with the next assumptions: (i) x << 

a, (ii) volume conservation, (iii) centre-to-centre approach, and (iv) a 

straight line neck geometry. For the model system topology shown on Fig. 1, 

[24] were the following equations from the volume conservation principle in 

the contact region are derived: 
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24. Chen, J.H.  Johnson, P.F., Computer Simulation of Initial Stage Sintering in Two-Dimensional Particulate Systems”, P.E. 

Russell, Ed., Microbeam Analysis- 405-409, 1989, 
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Figure. 1. The Coble’s two sphere model. 
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Figure. 2. The “realistic” two sphere model.  
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Figure. 3. Planar sections and 3D elements of the “realistic” two sphere model. 
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Figure 4. The radius r from Fig. 3 as function of R = R1 = R2, and h, the height of 

a “half length” of lens-like common zone. 
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In connection with ceramics grains’ clusters there is an intriguing concept 

of Apollonian sphere packing, the 3D equivalent of Apollonian gasket, a 

fractal construction mentioned by Mandelbrot [30]. Using inversion method, 

Boyd [31] established criteria for a single sphere to tangent other N unequal 

spheres touching each other. Based on this result, Borkovec et al. [32] 

estimated fractal dimension of the Apollonian sphere packing as approx. 

2.473394, which is on the lower limit of the dimensions estimated using SEM 

photos of ceramics material, ranging from 2.4 to 2.85 (roughly). 

30. Mandelbrot, B. B., The fractal geometry of nature, W. H. Freeman, New York 1983. 

31. Boyd D. W., The osculatory packing of a three dimensional sphere, Canad. J. Math. 25, 303-322 (1973). 

32.    Borkovec M. et al., The Fractal Dimension of the Apollonian Sphere Packing, Fractals, Vol. 2, No.   4, 521-526 
(1994). 

https://cms.math.ca/cjm/
https://cms.math.ca/cjm/
https://cms.math.ca/cjm/
https://cms.math.ca/cjm/
https://cms.math.ca/cjm/
https://cms.math.ca/cjm/
https://cms.math.ca/cjm/
https://cms.math.ca/cjm/
https://cms.math.ca/cjm/v25/
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Figure 4a. The 3D Apollonian sphere fractal generated by AploFrac 1.0 (freeware by Th. 

Bonner, 2011). No of iterations 1 – 6.  According to [Borkovec et al.], DHf = 2.4739465 is 

fractal dimension of  the limiting figure (iteration  tends to  + oo) 
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Spherical to Ellipsoidal Model Transformation 
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Figure 5. a) Ellipsoidal grain approximation, b) neck growth of two ellipsoidal 

grains in sintering process. 
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where R1-the radius of spherical grain corresponding to ellipsoidal grain E1. 

  

Figure 6. 3D model of contacting three spherical grains during a. initial, b. middle 

and c. final moment of simulation. 
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The modelling procedure 

 For modelling of spherical grains, the polyhedron-polyhedron model system is used.  

 The approximated ellipsoidal surface of a grain is represented by series of polygons 

connected to each other side by side with C0 continuity [13] (Fig. 6).  

 Also, the real function f(x, y, z) representing the grain’s volume as follows: an arbitrary 

point M(x1, y1, z1) belongs to the interior of grain if f(x1, y1, z1 ) 0, and it is outside of 

the grain if  f(x1, y1, z1)  0.  

 Two grains are fixed in space so that they can touch or intersect themselves, and the 

third one is approached along the determined direction. We have observed the process 

from the moment of contacting mobile grain with one of the static grains until the 

moment of grains assimilation, then pores between them a vanished.  

 During simulation, the area size of each contact surface, the distance between each 

pair of grains as well as the length of the pore formed between grains, has been 

calculated.  

 The edge polygons are not treated due to their small influence on the value of total 

area (less than 104 for the approximation of grain with 106 polygons) as well as 

considerable influence on the simulation rate.  
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Ellipsoidal contact model 
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Figure 7. Diagram of X2  

via (d  R2)/R1. and q. 
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Sphere-polyhedron model 

17. Mitić, V.V.,  Kocić, Lj.M., Ristić, M.M.  The Fractals and BaTiO3-Ceramics Structure, Extended Abstracts of the 5th 

Conference and Exhibition of the European Ceramic Society, Euro Ceramics V, Part 2, Versailles, France,. 1060-1063, 

1997. 
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Figure 8. Icosahedron subdivision geometry. 
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Polyhedron - polyhedron model 

Figure 9. Grain’s 

approximations by 

the octahedron-

cube intersection. 
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Figure 10. 

Different 

grain’s 

approxi-

mations. 
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Figure 11. Ceramic grains approximated by polyhedra in sintering process of 

joining two grains, forming a capacitor-like contact zone. 
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Heywang Model and the Curie-Weiss Law 

The most widely accepted model to explain PTCR effect is the Heywang model 

[25] which describes the resistance-temperature behaviour based on a double 

Schottky barrier. This barrier is caused by deep acceptor states trapped at the 

surface of grains. The height of the barrier at the grain boundaries is described as: 
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where R0 is a constant, k is the Boltzmann constant, and e is the electron 

charge. According to the Curie-Weiss Law [26]:   

(/ ) r cC T T   (9) 

where C is the Curie constant, T is the temperature, and Tc is the Curie 

temperature. Above the Tc, the resistivity increases quickly, because of the 

variation of r. Thus, PTCR effect directly relates to grain boundary. From eq. 

(7), ns, ND, and r can greatly affect the height of the barrier. As it will be 

pointed in the further text, all above formulas (7), (8) and (9) are amenable to 

corrections due fractal nature component, present in ceramics microstructure. 

25. W. Heywang, H. Thomann, Electronic Ceramics, London and New York, 1991.  

26. Pontes, F.M., Pontes, D.S.L., Leite, E.R., Longo, E., Chiquito, A. J.,  Pizani, P. S., Varela, J.A., Electrical conduction 

mechanism and phase transition studies using dielectric properties and Raman spectroscopy in ferroelectric 

Pb0.76Ca0.24TiO3 thin films, J. App. Phy., 94, 11, 7256. (2003). 
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Temperature impact 

Arguing about the crystal surface „natural roughness “ as macroscopic steps 

collection on the arbitrary section surface of the crystal plane section, an 

observation Frenkel [27] had come forward with, that this roughness does 

not coincide with the crystal faces atomic roughness, with small surface 

energy, which can occur as a thermal fluctuations consequence at high 

temperatures. This temperature consideration illustrates the impact on 

dynamical processes inside the ceramics body. Such impact generates a 

motion inside the ceramics crystals in the Fermi gas form, containing 

different particles such as electrons (Bloch wave), atoms, atomic nuclei etc. 

[28]. In essence, this motion has a Brownian character and imposes necessity 

of introducing the third fractality factor–factor of movements,  

25. Frenkel’, Ya. I.  On the surface crawling particles in crystals and the natural roughness of natural faces, JETP 16 

(1), 1948. 

26. Mitić, V.V., Fecht,H.J., Kocić,Lj.,  Materials Science And Energy Fractal Nature New Frontiers, Contemporary 

Materials (Renewable energy sources), VI, 2 (2015) Page 190-203. 

(0 1).M M  
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Figure 12. The dependence of α on T and α0 according to (13). 
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Figure 13. Equivalent electrical model of contacted grains. 
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Intergranular impedance model 

Taking into account that intergrain contact surface, is a region, where 

processes occur on the electronic level in the electro-ceramic material 

structural complex grain-contact-grain, can be represented by an electrical 

equivalent network consisting of three RC branches as it has been noticed in 

introduction (Fig. 14).  

All this allowed us to consider BaTiO3-ceramics sample, as a system with 

a huge number of mutually contacted grains, which form clusters. For each of 

them, it is possible to establish the equivalent electrical model and, for 

defined set of input parameters, using symbolic analysis, obtain the frequency 

diagram. However, the simple RC circuit is not sufficient to explain resonant 

behaviour of a ceramic sample. In order to calculate equivalent impedance for 

a wide frequency range, the equivalent electrical circuit for a ceramic material 

can be introduced as an equivalent impedance Ze, containing two capacitances 

C and Ce, an inductance L and a resistance R.  
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Therefore, it is more likely that equivalent circuit model of contacted grains 

has parallel and series branches as presented in Fig. 14. 

Consider now, an intergranular contact impedance as shown in Figure 14. 

Here, Ce is the main capacity component while C, R and L are parasite 

capacity, resistivity and inductivity resp., without -correction, which means 

that intergranular geometry is considered as being flat and smooth. It is not 

difficult to see that the equivalent impedance, with -correction included 

should be  

Figure 14. Two ceramics 

grains in contact form a 

micro-capacitor with resistive 

and inductive component. 
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Figure 17.  Left. The equivalent circuit for the four grains contacts. Right. Cube 

of impedances. 
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Combined grain approximations 

In some cases, polyhedral grain’s approximation is acceptable, as well. 

In this case a polyhedron can be constructed as a 3D graph which nodes are 

points on the ellipsoidal surface. So, we can consider an approximate model 

of two grains’ group in three ways: 1. ellipsoid - ellipsoid (EE) contact; 2. 

ellipsoid - polyhedron (EP) and 3. ellipsoid - grain (EG) contact (Figure 18). 

Here is interesting to determine what the distribution of the intergranular 

contacts looks like. secondly, what is a more general formula for evaluating 

the size of all contact patches in the volume unit of BaTiO3-ceramics. And 

last, but the most complex is the question of the nature of intergrain layers 

and their relationship with microcapacitor distribution. of course, it must be 

keep in mind that all parameters mentioned are functions of sintering process 

parameters ( t, p and  ). 

In the light of the geometric method explained above we can extend this 

approach from the case of EE intersections to the case of EP and EG 

intersections.  



49 

In fact, the value of two grains’ contact area is given by  

S

A d 

where S is a mathematical surface that will be described soon and d is a usual 

differential element of the surface. For all three models a surface S can be 

characterized in the unique way by intersection of the ellipsoidal surface with: 

1. Another ellipsoidal surface, 2. a polyhedron surface and 3. real grain surface 

that can be expressed in terms of fractal functions. Even in the case the 

analytical method can be applied (EE) there is no use for this because the 

method of evaluation of the above integral must be a numerical method. 

Consequently, the method of two surface intersection is reasonable to be 

numerical, as well. In all cases it is enough to find a discrete points laying in 

the intersection line. In the case of EE intersection, the analytical solution of 

the intersection is to be discretized which reduces the problem on the case of 

EP intersection. The method is, as follows. 

  



50 

A polyhedron P can be regarded as union of vertices V and sides . The set 

of vertices is divided by ellipsoidal surface E in two groups: V1 - vertices 

inside of E including the surface; V2 - vertices lay outside of E. These two 

groups of vertices divide  the set of sides in three groups:  

 = 1  2  3 , 

where 1 are sides whose both end points are in E, 3 are sides outside of E 

and 2 contains all sides that connect vertices from V1 and vertices from V2. 

Each side from 2 contains a unique point being characterized by the 

unique parameter t, t  (0, 1), so that (1  t)p1 + t p2 is a point on the 

ellipsoid. If the ellipsoid has semi - axes a, b, c and p1 = ( x1, y1, z1 ), p2 = ( 

x2, y2, z2 ), parameter t must obey a quadratic equation A t 2 + B t + C = 0, 

where 
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What we want to get is the value of size of a part of surface of P which is 

immersed into ellipsoid [10]. Let this surface be denote by , then  - the 

value we want, can be approximate by the union of triangular elements. 

The size of each triangle is given by 1/2 of the modulus of vector product of 

its sides. 

 As far as the EG contact is concerned, the calculation is a little bit 

complex mainly due to the fact that a fractal grain is defined by recursive 

functions (a fractal structure of such contact is shown on magnified detail 

in the scope of Figure 18). But using the binary tree algorithm and a convex 

hull property of fractal algorithms the intersection of one meridian line in 

fractal grain with an ellipsoid is not difficult to find. Actually, let S0 be a 

starting set in 3D space for the recursive procedure of making auto 

composition of the Hutchinson contractive operator. Then, a sequence of 

sets has been produced.  
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Figure 18. EE-EP-EG-group of BaTiO3-ceramics grains and a fractal structure of 

the contact zone. 
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Being a union of smaller copies of the attractorlet from previous stage the 

new attractorlet obeys the convex hull property which allowed to find its 

intersection in any compact set in 3D. After the fractal intersection contour is 

determined its area can be estimated by the using of suitable numerical 

method. 

 A surface S that appears in the integral formula is union of all intergrain 

contact surfaces in a prescribed volume V of BaTiO3-ceramic sample. This 

surface can be defined by using characteristic function of some set A 

1, ,
( )

0, otherwise.
A

x A
x


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

Let G be a contact zone between any two grains. Define the following 

function 

  3( , , ) ( ),      .G

T
x yF x zy z   r r R
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It is clear that F is a discontinued function defined over the volume of the 

sample being considering. Let F be the usual gradient of the function F 

with convention that in the point of discontinuity r0, where the limes of pre-

gradient fraction goes to infinity, it will be taken F(r0) = . It is easy to 

see that the set defined by  

  0: 1G F   r r

1( , , ) ( )
iG

i I

F x y z 


  r
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Non-contact intergranular capacities 
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Figure 19. Two neighbor grains and a micro-capacitor. 
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Figure 19a. The neighbor grains in the BaTiO3 + 0.1Ho 

ceramics specimen, sintered in 1320oC. 
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Figure 20. Electrostatic field configuration for two slanted micro-surfaces and 

an approximating mathematical model in cylindrical coordinates. 

Figure 21. Solutions (19) of Poisson’s equation 

(2) for voltages 5 to 40 V. 
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Contact intergranular capacities 
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Figure 22. Contact capacitor zone has fractal morphology. 
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Figure 23. Modeling intergranular capacitor by Iterated Function Systems and 

equivalent capacity schemes. 
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To the local fractality embodied in intergranular contacts it should be added 

the stereological distribution of the contacts throughout the ceramics bulk. 

Although these may seem stochastic, it is not so. Some amount of regularity, 

inherited from crystallite structures with fractal configuration appears. Some 

possible basic models are shown in the Figure 24. 

Figure 24. Possible 

3D model of inter-

granular capacities 

organized according 

the Sierpinski pyra-

mid (top) and Men-

ger sponge (below). 
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Inner fractality and -corrections 
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Fractal structure of grains 

Since seminal works of Mandelbrot [*], [**], have appear, fractals keep finding 

applications in many technological domains. Powder metallurgy is not an exception. 

Some earlier works have been devoted to this topic. The core of this point of view is 

fractal geometry of the grains of powder components and dynamics of sintering. 

 

In fact, dynamics of motion inside the BaTiO3-ceramics is very similar to Brownian 

motion. The only quantifier that is inherent in such irregular object like graph of B-

motion is Hausdorf or fractal dimension. In other words, Brownian path is a fractal 

in its nature. 

 

Note that the graph of D1-Brownian motion is neither “self-similar” nor “self-

affine”. For the graph above, DHf = 1.5, and this is characterization of any part of 

this graph. 

* B. Mandelbrot: Les objets fractals, forme, hasard et dimension, Flammarion, Paris,1975. 

** B. Mandelbrot: The Fractal Geometry of Nature (3ed.), W. H. Freeman, San Francisco, 1983 
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Fractals have been “discovered” relatively lately, much latter than other very 

fundamental secrets of the Nature. 

Figure 25. Timeline of important discoveries in the first ¾ of 20-th 

Century 

In the papers [Mitić, Kocić et al., 33, 34, 35] fractal analysis was first time 

applied in investigating ceramics materials properties. In fact, even before they 

become ceramics, many powder materials have fractal structure, as noted Kaye 

[36]. This “fractality property” remains during the sintering process. Still, the 

fractal dimension of grains’ contours, surfaces as well as pores changes during 

sintering phases. 
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Figure 26. Self-similarity in grains configuration. 
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Electronics ceramics, especially BaTiO3-ceramics which we were focus 

on in [33, 34, 35], are made out of very fine powder particles having 

about 2μm as their maximum Ferret diameter. These particles have high 

enough surface energy to fuse together and to made sintered ceramics. 

After the sintering process being finished, SEM micro-photographs 

reveal a lot starting powder fractal-like morphology remains. The above 

figure shows three SEM’s with magnifications of 750, 1500 and 3500. 

The form of a grain contour is ‘self-similar’ to the perimeter of a group of 

grains or of the larger bunch of grains. Here, the word similar is under 

quotations since it does not represent notion of mathematical similarity.  

This kind of self-similarity is called statistical self-similarity. It is used in 

looser sense of associative feeling of The Curie-Weis law defined by the 

approximate relation (9). showing that relative dielectric permittivity 

depends on temperature hyperbolic changing rate. The spontaneous 

polarization of barium titanate is about 0.15 C/m2 at room temperature. It 

is also piezoelectric material. Polycrystalline barium titanate displays 

positive temperature coefficient, making it a useful material for 

thermistors and self-regulating electric heating systems.  
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Figure 27. Relative permittivity of BaTiO3 vs. temperature below the 

Curie point. Histeresis loops indicate nonlinar dynamics 
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Figure 28. BaTiO3-ceramics grain (left), extracting contour data (middle) and 

their parametric form (right). 

The slight geometric analysis reveal high complexity of the outline of a 

ceramics grain. Fractal analysis it the most suitable tool to measure, store and 

operate with this complexity. 
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Figure 29. SEM of Holmium doped (0.5 wt%, sintered at 1320oC) BaTiO3-

ceramics grains and its isarithmic map (level lines) diagram. The intricacy of 

surface leaves impression of chaos and disorder. 
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Figure 30. Enlarged fragment of BaTiO3-ceramics grain SEM and its 

isarithmic map about 35x35 microns. 
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Figure 31. BaTiO3-ceramics grain from previous SEM represented as 

numerical 3D surfaces in two resolutions. 
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Figure 31. Left: Discrete Fourier Transform and log-log diagram given by the 

Herzfeld−Overbeck algorithm. It estimates the fractal dimension of the fragment to 

1.91214 with an error of  0.085172.  
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The method used for this first attempt is the box-counting method based on the 

famous formula 

 0

ln ( )
lim

ln 1/
f

r

N r
DH

r


where N(r) denotes the number of boxes (square boxes in 2D space or cubits 

in 3D space). Ceramics grains are so called “slim” fractal, i.e. the fractal that is 

pretty close to the smooth contour. 

Figure 32. SEM of BaTiO3-ceramics sample, extracting interpolation points and 

convex hull of these data 
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Figure 33. Once having interpolation points (left), the “hidden variable” fractal 

interpolation is applied to get the fractal reconstruction of the grain’s contour. 
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Figure 34. The {ln d, ln L(d)} data least-square fitting by linear function reveals the 

slope coefficient a, which is equivalent to fractal dimension DHf  of the contour. Two 

squares and the circle around the point pi represents the geometric sets of points which 

distance from is constant in three different metrics. 



86 

Figure 35. Three grains approximated by spheres (left) and Coble’s neck formed 

during sintering process (right). This is the mechanism of creating intergranular 

micro-capacitors, the energy storage units. 



87 

Once having the method of retrieving the fractal dimension, gives the chance 

to go deeper into the nature of grain’s micro contacts. At this point the 

concept of Minkowski hull came forward. 

A structural pattern of three sphere-shaped ceramic grains: contacting only in 

one point (left) and making contacts (right). The lower picture explains the 

construction of the generalized Minkowski hull, as a surface having the 

distance of the grain’s surface defined by the convex body rolling over the 

surface. Minkowski hull can be used to evaluate fractal dimension of an 

object. The hull itself is defined as 

 3

max( ) : ( , ) ( ), 0,Fmin Fm cx ba x d x GSMH t td d d t    R

Where GS is the grain surface and dcb is Feret diameter of a convex body 

rolling over the surface GS. The fractal dimension is then  

 
0

,( )ln
lim sup   3 ,

l
.

n

Fmin Fmax

f Fmax Fmin

MH d d
D

Vol
H d d






 


  



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Figure 36. Construction of the convex planar figure with orthogonal Ferret 

diameters. 

 

The maximum Feret’s diameter, dFmax, also called the maximum distance 

in some references, is defined as the furthest distance between any two 

parallel tangents on the particle. Likewise, the minimum Feret’s diameter, 

dFmin, also called the minimum distance in some references, is defined as 

the shortest distance between any two parallel tangents on the particle.  
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Figure 37. Construction of  Minkowski hull using predefine convex planar figure 

with orthogonal Ferret diameters ( generalized Minkowski hull MH(dFmin, dFmax) ). 
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Figure 38. If dFmin, dFmax, are two extremal Feret diameters of the 2D convex body 

used to generate generalized Minkowski hull, MH(dFmin, dFmax)  is uniquely defined 

by these diameters and the starting point of rolling motion on the perimeter of 2D 

grain. This concept extends in natural way on 3D grains and 3D convex bodies. In 

the case of grains’ cluster (as it is in the case of the above picture), the neck 

formation in the liquid phase of sintering cause overlapping of associated GM hulls. 

The degree of overlapping define properties of intergrain zones. 
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Figure 39. The generalized Minkowski hull (the black ring on the right photo) of a 

ceramic grain from the SEM photo (left photo). 

Construction of  2D Minkowski hulls MH(dFmin, dFmax) using predefine convex 

planar figure with orthogonal Ferret diameters dFmin and dFmax anticipate 

quality of the intergrain zone. Diameter changing suites the geometry of 

ceramics grains since the intergrain space is not constant in thickness, which is 

visible in the microphotographs. 
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The Minkowski hull is characterized only by its distance from the grain. 

Consider two grains with hulls                          and                        . The 

meaning of these distances and the Minkowski hulls is that the grains’ 

coarseness stays inside the hull. It means that no micro relief hills overtop 

the hull boundary. If two grains are in the position when their distance is not 

bigger than                     , the grains are in the position of the first touch. 

If d becomes smaller than                          , the intergranular zone begins to 

form. 

 
min max

2 2,
F F

MH d d  
max max

1 2,
F F

MH d d

 
max max

1 2,
F F

MH d d
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max max

1 2,
F F

MH d d
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The second characteristic position is when the either hull’s contour touches the 

other grain’s body, i.e., when d = max{ r1 , r2 }, the second contact is 

encountered. The third contact comes when d = min{ r1 , r2 }. Contact of two 

grains in only one point is the fourth contact, in two points is the fifth contact 

and, finally if 3 points is common, it is the sixth contact. Without the concept of 

fractal surface, the above considerations will be pointless. 
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Figure 40. a. The lens-shaped contact zones between grains as micro-capacitors 

formed by Minkowski hulls MH(dFmin, dFmax) intersection;  

b.-c. The amount of integral capacity depends on the volume of caps that is 

determined by the Feret diameters X and Y and “lens” thickness d ;  

d.  The curvature, characterized by LX/X or LY/X  ratio influences electricity 

distribution on “lens” surface; 
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Figure 41. Reconstruction that emulates TEM microphotograph.  

SEM sample and 3D fractal reconstruction 
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DHf ≅ 2.68 

Figure 42. Fractal dimension estimation 

using Power spectrum algorithm 
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DHf ≅ 2.66 

Figure 43. Fractal dimension estimation using Partitioning algorithm 
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DHf ≅ 2.59 

Figure 44. Fractal dimension estimation using Surface 

triangulation algorithm 
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DHf ≅ 2.51 

Figure 45. Fractal dimension estimation using Box (cube) 

counting algorithm 
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Figure 46. The Fast Fourier transformation of the surface shows chaotic emerging of 

picks of different frequencies 
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 Energy and fractals 

World’s need for energy imposed the whole spectra of technological 

challenges that further transform to scientific tasks.  This chapter discusses 

the role of fractal geometry and analysis in energetic questions. In fact, some 

of the early fractal applications have been used as a tool in energy research, 

applying on diverse energy technologies, from photovoltaics to fuel cells  

and carbon capture. 

Three items are essential regarding energetic questions:  

i) Free energy stocks location;  

ii) Energy harvesting;  

iii) Short and long term energy storage; 
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What fractals and energy have in common? 

I. Both fractals and energy are properties, energy is physical objects property, 

fractality is geometrical; 

II. As well as energy, fractality is omnipresent, unlimited entity concerning space 

and time. There is a strong belief and many evidences that the whole Universe 

is permeated by fractal structures as well as by energetic fields; 

III. Both entities, energy and fractality exist in micro and macro world. Any fractal 

is dividable down to nano-scale as well as the energy field; 

IV. Energy is closely connected with geometry structures and especially with 

nano-geometry. Some energetic extremal problems as a solution have smooth, 

symmetric Euclidean objects, another have fractals; 

V. If an energetic situation can be described by fractals, then potential energy 

corresponds to fractals constant in time while kinetic energy needs time 

dependent fractals;  

VI. Energy spectrum and energy spectral density of some time series (signals), by 

the rule, has fractal structure; 
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In i., term “geometry” as it is custom in plain language, understands “shape” rather 

than the science of geometry. In this sense, geometry is a property. And it is more 

present in everyday life than we are usually aware of. Just note that all our senses 

often convey information on the quality of some matter by interacting with some 

geometry or shape. The touch feeling of smooth or rough surface, olfactory or taste 

data generates according to geometry of particles, etc. With fair precision, our eye can 

distinguish metal from fur or wood from feather.  

Figure 47.  
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Figure 48.  The Sierpinski square curve ( DH = 2,  when  n goes to infinity) displays 

typical behaviour of fractal object. While one dimension (length Ln) increases 

unlimitedly another one (area it covers, An) decreases to zero. 
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     Figure 49. The ratios area vs. length   for Sierpinski quadratic curve and Sierpinski 

carpet  as well as  the ratio for Menger sponge in logarithmic scale and with  3
log 10.n k=
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Figure 50. a. Energy of fractal curves as function of iteration number n. The higher 

fractal dimension ensures higher energy;  b. The  wind profile logarithmic law with 

fractal correction (6) showing the average wind speed as function of friction velocity 

u0, height z and fractal dimension of the surface DH. 
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Figure 51.  
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So, if the ceramics is organized as composition of grains and pores, and if pores  

have distribution that follows Sierpinski Carpet fractal configuration, than  

ln8
1.8928...

ln 3
Fd  

ln8/ln 1.89283( ) , or ( ) .a a a K a   

In this manner, the density of contacts is given by asymptotic formulae 
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DHf = 2.4739 DHf = 2.7268  

Figure 52. Paradox: Compariing the fractal dimensions of Apollonian fractal and 

Menger sponge fractal reveals that the last one is less porous than Apollonian 

packing, although it looks it has to be just the opposite. 

3
( ) fDH
a K V  Estimation of contact density via the volume V = a3 is which 

gives the number of contacts in V as  
1

1
3( )

fDH

N V K V


 
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Figure 53. The graphs for values of DHf  estimated by Power spectrum algorithm 

(PSA), Partitioning algorithm (PA), Surface triangulation algorithm (STA), and Box 

counting algorithm (BCA). The top curve represents is the theoretical upper limit DHf 

=3 that corresponds to absolute dense material, without pores.  

1
1

3( )
fDH

N V K V


 

DHf =3  
Non porous 
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Figure 54. The graph of  Riemann Zeta function   Re (3 , )i x a  for 3D space i.e.,  

around the point (3, a), when 0.5 < a < 2. 
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Conclusion 

The first aim of this scope is to review some ceramics sintered materials 

intergrain models including generalizations of Coble’s two sphere intergrain 

contact model. In the initial sintering phase, two grains approximated by 

ellipsoids or polyhedrons, form a specific contact zone that is responsible for 

dielectric characteristics of BaTiO3-ceramics. In this way, ellipsoid-ellipsoid, 

sphere-polyhedron and polyhedron-polyhedron Euclidean geometry models, 

have been developed. In addition, we offer a fractal extension of all of these 

models using fractal representation of grains. This representation is obtained 

as a stochastic subdivision of a regular polyhedron inscribed in a Coble’s 

sphere, up to the certain extent. A short reflection on the Apollonian sphere 

packing is also given. Subdivision mechanism is flexible enough to give 

possibilities of changing fractal dimension of the grain, the real number that 

conveys information of irregularities on the grain’s surface.  
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In the models being observed, the normal grain growth is independent from 

initial pressing pressure so that the results prove the conjecture that dielectric 

constant has a direct correlation with consolidation parameters (pressing 

pressure, sintering temperature and time). By simultaneous analysis of 

relative dielectric constant, the grain size and the capacitance distribution it 

can be obtained optimal intervals of technological parameters: lower 

sintering temperatures and higher pressing pressures.  

Understanding the electrical properties of barium-titanate materials is 

important issue for modern devices applications and presents a challenge for 

simulation. In this study, the model of intergranular impedance is established 

using the equivalent electrical scheme characterized by a corresponding 

frequency characteristic. According to the microstructures we have obtained 

for BaTiO3, sometimes doped with rare earth additives, the global impedance 

of a barium-titanate ceramics sample contains both a resistor and capacity 

component. The resistor and capacity component was presented as a “sum” 

of many clusters of micro-resistors and micro-capacitors connected in the 

tetrahedral lattice.  
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The positions of neighbouring grains for the four grain cluster have 

been defined and according to them the tetrahedral scheme of mutual 

electrical influence of BaTiO3 grains has been established. The impedance 

model between clusters of ceramics grains has been presented and 

calculations of micro-capacitance generated in grain contacts of BaTiO3 

have been performed. By controlling shapes and numbers of contact 

surfaces on the level of the entire BaTiO3–ceramic sample, control over 

structural properties of this ceramics can be done, with the aim of 

correlation between material electronic properties and corresponding 

microstructure. 

High precision of the applied fractal nature mathematics opens the new 

perspectives to better intergranular capacity evaluation and micro-

impedances spatial distribution understanding with the further 

miniaturization and electronic circuits integration frontiers. With this, we 

can proceed towards better components and devices packing because the 

semiconductor technology possibilities are already limited.  
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Presented investigations results in the materials structures analysis 

area, and the fractal nature domain are important for more precise 

description of contact surface in energy storage area and in materials 

consolidation for battery systems. These results confirm microstructure 

constituent’s shapes, grains, reconstruction possibilities with Brownian 

motion particles application, by long term scientific research on the 

electronic materials fractal analysis. This is original contribution in the 

basic electrochemical thermodynamic parameters area by introducing the 

α, fractal correction function, having as the arguments three correction 

parameters αS, αP and αM, as electrochemistry area functions, especially 

from the energy storage aspects and creating new approach towards 

intergranular capacity. This offers a solid base for the future procedure and 

further application, to create new perspectives and solutions for advanced 

miniaturization, electronic parameters multi-level integration, materials, 

components and circuits (especially C, R, L) characteristics, as well as new 

solutions for better components and electronic circuits packaging.  
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All of these are of huge importance for the new and alternative energy 

sources, as the new frontiers towards miniaturization, what is in the new 

experimental-theoretical approach frame in the new model line developed by 

the authors, which could consider as the electrochemistry area Fractal 

microelectronics. From the other side, this paper is a systematic approach to 

create the method for the wind motion and turbulences, prediction the fractal 

nature influence. In this way, we confirmed the new fractal frontiers in the 

area of alternative energy sources, what is very new, precise and powerful 

approach. The concept design main goal is to reach the inventive ideas for 

final products with best performances. Through this method and results, we 

are opening the Fractal microelectronic new frontiers and technological 

processes, especially specific intergranular relations within grains surfaces 

coatings. This enlightening the new future intergranular thin film’s fractal 

nature microelectronics, from the one aspect, and also opening the new 

“window” towards that the sizes of the objects on the Earth, under the 

telescope from the space, are like microstructures under the microscope, from 

the other aspect regarding the fractal nature in the matter. 
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