Multi-component (high entropy) alloys as a basis for new generation of hightemperature materials

## S.A.Firstov IPMS NASU

#### sfirstov@ukr.net

"Materials resistant to extreme conditions for future energy systems" 12-14 June 2017,Kyiv - Ukraine

## Outlook

- Introduction
- Structure pecularities
- Non-obvious solid solutions hardening
- High-temperature applications
- New composites
- Conclusions

## Historical evolution of engineering materials (adopted from Ashby (2011))



- *Inoue A.,* Stabilization of metallic supercooled liquid and bulk amorphous alloys. *Acta Mater.* 2000, 48, 279-306. 2.
- Ranganathan S. Alloyed pleasures: Multimetallic cocktails // Current Science. 2003. 85, No. 7. –. P. 1404-1406.
- Yeh J.W., Chen S.K., Lin S.G. et al. Nanostructured high entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes // Adv Eng Mater, 2004, 6: 299–303.
- Huang K. H. A study on the multi-component alloy system containing equal-mole elements. Master Degree Thesis National Tsing Hua University in Taiwan, 1995!

#### **High entropy alloys**

"For the high-entropy alloys, solid solution can be formed by alloying, and its mechanical properties can be comparable to most of the bulk metallic glasses" (Yong Zhang, YunJun Zhou, XiDong Hui, MeiLing Wang and GuoLiang Chen, 2008)

 $Ti_{15}Zr_{15}V_{15}Cr_{15}Ni_{10}Cu_{10}Fe_{10}Sn_{5}Si_{5}$  $Cr_{20}Mo_{20}V_{20}Ta_{10}Ti_{10}Ni_{10}Nb_{8}Si_{2}$ 

There is no "host element"; It is not possible to say: Alloy based upon...

### **Entropy of mixing**



**Boltzman:**  $\Delta S_{mix} = -R \Sigma_{i=1}^{n} c_{i} \ln c_{i};$ R=8,314 J · mol-1 K-1 1995 – Jien-Wei Yeh **HEA** – multicomponent alloys more than 5 elements –  $5 \ge c_i \le 35$  at. %.  $\Delta S_{mix} > 13.38 \text{ J mol}^{-1} \text{ K}^{-1}$ 

#### **Consequences of high entropy:**

High thermal stability due to  $\Delta G = \Delta H - T \Delta S$ , including lower tendency towards segregation and ordering;

The total number of the forming phases is well below the maximum equilibrium number allowed by the Gibbs phase rule

Severe lattice distortion takes place, which lead to the significant solution hardening

# Material's high entropy consequences

- Thermal stability!
- Quantity of the forming phases in reality is surprisingly small



#### **Possible types of high-entropy alloys**

- **1** Amorphous crystalline phase is absent.
- **2** Single-phase BCC, FCC solid solution.
- **3** Two-phase two BCC-solid solutions with different lattice parameters. BCC+FCC or BCC+hexagonal lattice.
- **4** Tree-phase BCC-BCC-FCC; BCC-HCP-FCC.
- **5** Intermetallic phases Laves phase (c-14, c-15),  $\sigma$ -phase type of CrF, hexagonal lattice type of Fe<sub>3</sub>Mo<sub>2</sub>

## **Important factors**

- Atom sizes difference
- Electron-per-atom ratio
- Mixing enthalpy
- Entropy

 $\Omega = T_m \Delta S_{mix} / |\Delta H_{mix}|$ 

$$G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$$



#### **Atomic radii of metals**



## Stability of crystal structures by Pettifor (1970)



#### Solid solutions: lattice type vs. e/a

| Composition                | e/a  | lattice   |
|----------------------------|------|-----------|
| TiZrHfScY                  | 3.6  | НСР       |
| TiZrHfScV                  | 4.0  | HCP + BCC |
| Ti25 Zr25 Hf25Nb12,5Ta12,5 | 4.25 | BCC       |
| TiZrHfVTa                  | 4.4  | BCC       |
| TiZrHfVTaW                 | 4.7  | BCC + BCC |
| TiZrHfVNbMo                | 4.7  | BCC       |
| AITiVCrNbMo                | 4.8  | BCC       |
| VTaCrMoW                   | 5.6  | BCC       |
| ReMoWVN                    | 5.8  | BCC       |
| ReMoWNbTa                  | 5.8  | BCC       |
| FeCoNiCrAl                 | 7.2  | BCC       |

#### Solid solutions: lattice type vs. e/a

| Composition                  | e/a   | lattice   |
|------------------------------|-------|-----------|
| CoNiCuAlCrVMn                | 7.3   | FCC +BCC  |
| FeCoNiCu <sub>0,5</sub> CrAl | 7,54  | FCC + BCC |
| AICrMnFeCoNiCu               | 7.7   | FCC + BCC |
| AlCrFe <sub>0,5</sub> CoNiCu | 7.8   | FCC + BCC |
| AICrFeCoNiCu                 | 7.83  | FCC + BCC |
| AlCrFe <sub>2</sub> CoNiCu   | 7.85  | FCC + BCC |
| AlCrFe <sub>3</sub> CoNiCu   | 7.875 | FCC +BCC  |
| CrWFeCoNiCu                  | 8.3   | FCC +BCC  |
| CrMnFeCoNiCu                 | 8.5   | FCC       |
| FeCoNiCuCr                   | 8.8   | FCC       |
| CrMnFeCoNiCu <sub>3</sub>    | 9.1   | FCC       |

# FCC,BCC and FCC+BCC phases versus VEC, $\Delta H$ , $\Delta r$ and $\Omega$



FCC-black points BCC-red points FCC+BCC - blue

ΔH- mixing enthalpy
Δr- atom size difference
VEC- electron concentration

#### **Electron concentration, phase composition and Young modulus of HEA solid solution**



## Interrelation between properties of high entropy equiatomic BCC alloys

| Material          | Electron<br>concentration,<br>e/a | E, GPa | a, nm  |
|-------------------|-----------------------------------|--------|--------|
| Fe-Co-Ni-Al-Cr    | 7.2                               | 168    | 0.2886 |
| Cr-Fe-Co-Al-Ni-Mn | 6.6                               | 130    | 0.2906 |
| V-Nb-Ta-Cr-W      | 5.4                               | 100    | 0.3207 |
| Ti-V-Zr-Nb-Hf     | 4.6                               | 90     | 0.3350 |
| Ti-Zr-Hf-Nb-Ta    | 4.4                               | 88.    | 0.3352 |
| Ti-Zr-Hf-V-Nb-Ta  | 4.25                              | 85     | 0.3405 |

## **Structure peculiarities**

#### **BCC** and **FCC** equimolar alloys





#### **BCC structure**

(a) – ideal lattice (Cr);

(b) – distorted lattice (Cr-V solid solution);

(c) – extremely distorted lattice in multicomponent alloy (CoCrFeNiTi<sub>0,5</sub>)

*Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw Solid-Solution Phase Formation Rules for Multi-component Alloys // Advanced Engineering Materials, 2008, P. 534–538* 

#### Initial (a) and optimized (b) clusters in equiatomic TiVZrNbMo alloy - modeling

a





b

#### Specific nanostructure in Ti-V-Zr-Nb-Hf alloy









#### Nanoclusters? Double Fourier image processing

#### Cluster structure of highentropy alloys



## Non-obvious solid solution hardening

## Yield stress temperature dependencies BCC and FCC metals



Аl-Ti-V-Nb -Cr-Mo (lattice– BCC; a=0,31307 нм)  $\Delta S_{mix}=14,9$  J·mole<sup>-1</sup>·K<sup>-1</sup>; H<sub>IT</sub>=8,1 ГПа; E\*=160 ГПа Unusual (non-obvious) hardening  $\tau=G\Delta a/a$ 



#### Temperature dependencies of normalized yield stress ( $\sigma_{02}/E$ ) for AlTiVCrNbMo alloy and typical BCC metals



**T**, **K** 

## **BCC-like behavior in FCC HEAS**



## **BCC-like behavior in FCC HEAS**



## **Average lattice distortion**



# Single dislocation movement in some pure metal and HEA





**Burgers vector precession!** 

 $\Delta \tau = k(\Delta b/b)G$ 

#### Hardening due to lattice distortions

 $\Delta b_n = 0,5b(\Delta a/a)$ 

 $\Delta \sigma = 0,5(\Delta a/a) G$ 

 $\Delta \mathbf{H} = \mathbf{k}_{\mathbf{H}}(\Delta \mathbf{a}/\mathbf{a})\mathbf{G},$ 

 $H = H_{mix} + \Delta H = H_{mix} + k_{H} (\Delta a/a) G$  $k_{H} \approx 1,5$ 

### Hardening parameter K<sub>H</sub>

| Alloy       | Lattice<br>parameter, nm | Hardness,<br>GPa | K <sub>H</sub> |
|-------------|--------------------------|------------------|----------------|
| AlCrMoNbVTi | 0,3128                   | 5.1              | 1,57           |
| TaNbHfZrTi  | 0,3404                   | 3,826            | 1,59           |
| (D.Miracle) |                          |                  |                |
| WNbMoTaV    | 0,3183                   | 5,25             | 1.51           |
| (D.Miracle) |                          |                  |                |

## Hot hardness dependence upon temperature for selected HEA`s



## Reasons for athermal "plateau"

- Pico-level lattice distortions
- Peculiarities of GB engineering in HEAs (healing of weak places in GB)
- Possible DSA effects in multi-component alloys

### **Boundary**





If  $E_{xx} > E_{MM}$  and  $E_{MX} > E_{MM}$  strength (hardness) increases. If  $E_{xx}$  ( $E_{MX}$ )<  $E_{MM}$  strength (hardness) decreases. In multicomponent systems the possible healing of the week points in the grain boundaries structure can occur and this can lead to the extremely high strength (hardness). Using the segregation of the useful impurities or alloying elements, it is possible to realize the healing of weak places in the grain boundaries and to obtain the essential increase of mechanical properties as a result.

#### Distortion effect on parameters H<sub>0</sub> and k<sub>H</sub> in equation

| Alloy    | Hall-Petch<br>intercept, <i>H</i> <sub>o</sub> (HV) | Hall-Petch slope<br>k <sub>H</sub> (HV·µm <sup>-2</sup> ) |
|----------|-----------------------------------------------------|-----------------------------------------------------------|
| FeNiCoCr | 118                                                 | 165.5                                                     |
| FeNiCo   | 97.3                                                | 131.1                                                     |
| NiCoCr   | 146.5                                               | 197.3                                                     |
| FeNi     | 104.7                                               | 113.4                                                     |
| NiCo     | 62.2                                                | 167.1                                                     |
| Ni       | 68.6                                                | 34.3                                                      |

[Wu, Zhenggang, "Temperature and Alloying Effects on the Mechanical Properties of Equiatomic FCC Solid Solution Alloys. "PhD, diss., University of Tennessee, 2014. P. 125. http://trace.tennessee.edu/utk\_graddiss/2884]





 $(\Delta a/a)_{cp} *G$ 

 $H = H_o + k_H d^{-1/2}$ 

### Yield stress temperature dependencies



Inconel 718, Haynes

HEAS, IPMS

Now we are working with two alloy groups with decreased density

- Density 6 8 g/cm<sup>3</sup> instead 8.5-9 g/cm<sup>3</sup> g/cm<sup>3</sup> (materials competitive with Inconel and Haynes)
- Density 3.6 -3.9 g/cm<sup>3</sup> instead 4-4.5 g/cm<sup>3</sup> (materials competitive with γ- aluminides)

| T,K  | σ <sub>γ</sub> , MPa | $\sigma_{u}$ | δ, % |
|------|----------------------|--------------|------|
| 273  | 930                  | 980          | 10,5 |
| 1073 | 837                  | 810          | 35   |
| 1173 | 430                  | 450          | 37   |
| 1273 | 230                  | 250          | 40   |
| 1373 | 110                  | 120          | 45   |

Density 7,9 g/cm3

| T,K  | σ <sub>γ</sub> , MPa | $\sigma_{u}$ | δ, % |
|------|----------------------|--------------|------|
| 273  | 1247                 | 1463         | 6,8  |
| 373  | 1123                 | 1962         | 11,2 |
| 573  | 872                  | 1858         | 10   |
| 773  | 896                  | 1306         | 14,1 |
| 1023 | 775                  | 837          | 16,2 |

Density 3,9 g/cm<sup>3</sup>



#### (Nb-Cr-Al-Ti-Zr-Si)



γ= 6,35 g/cm<sup>3</sup>; T = 1000 °C; σ<sub>02</sub> = 860 MPa

Solid solution and phase type Me<sub>3</sub>-X

#### **Composites and in-situ composites**

#### **High-temperature hardness**



1- NbCrMoVTa; 2- FeCoNiCrW;
3- TiZrVNbCr; 4- TiZrHfVNb

## Al-Cr-Fe-Cu-Ni



## AI CR Fe Co W



#### Structure and composition of phases in Fe-Ni-Co-Cr-Mo-W equiatomic alloy

BCC- 45,29 %; (FeCoNiCr)<sub>3</sub>(MoW)<sub>2</sub>- 40,19 %; FCC- 14,52 %

|          |                           |         | 5<br>BCC | 4<br>HCP | 2<br>FCC |
|----------|---------------------------|---------|----------|----------|----------|
|          | Спектр 4                  | element |          |          |          |
|          | спектр 3 спектр 2         | W       | 59.43    | 18.87    | 3.46     |
| Спектр 1 |                           | Мо      | 30.43    | 21.28    | 8.95     |
|          | Спектр 5                  | Cr      | 6.92     | 15.72    | 20.30    |
| ANY C    |                           | Fe      | 2.22     | 16.10    | 18.70    |
| XXXX     | A REAL                    | Со      | 1.00     | 16.22    | 18.70    |
| 40мкт    | Электронное изображение 1 | Ni      | 0.00     | 11.80    | 25.78    |

## STRUCTURE and PROPERTIES of FeCoNi2MnCrCu-Al Composite



## Internal crystallisation method



Mileiko ST, Kazmin VI. Crystallisation of fibres inside a matrix: a new way of fabrication of composites. J Mater Sci 1992; 27(8):2165-2172.

Mileiko ST. Single crystalline oxide fibres for heat-resistant composites. Compos Sci Technol. 2005; 65(15-16):2500-2513.

## Internal crystallisation method

#### 5. Dissolution of molybdenum





#### Eutectic fiber Al2O3-Y3Al5O12-ZrO2 in matrix FeCoNiCrW after treatment at 1530°C.



#### Fibers Al2O3-Y3Al5O12-ZrO2 + matrixFeCoNiCrW



## Strength temperature dependence of the composite with eutectic fiber Al2O3-Y3Al5O12-ZrO2 and FeCoNiCrW alloy matrix



## High-entropy superhard coatings

## **GB** – engineering of nanostructured materials. "Theoretical" hardness





#### **Properties of some high-entropy coatings**

| Coating<br>compositions | Phase composition<br>%, lattice parameter<br>a, nm | H <sub>IT</sub> ,<br>GPa | E <sub>r</sub> ,<br>Gpa | H <sub>IT</sub> / E <sub>r</sub> |
|-------------------------|----------------------------------------------------|--------------------------|-------------------------|----------------------------------|
| TiVZrNbHfTa             | BCC-100-0,3264                                     | 10,1±0.3                 | 105±3                   | 0,096                            |
| AlCrFeCoNiCuV           | BCC-67,24-0, 2887<br>FCC-32,74- 0,3663             | 18.6±0.4                 | 187±5                   | 0,099                            |
| TiZrHfNbTaCr            | c14 -75,36 -0,5164<br>BCC-24,64 -0,3284            | 19,0±0.6                 | 192±8                   | 0,099                            |
| Cr-Co-Cu-Fe-Ni,         | FCC-0,3605                                         | 15,0                     | 181                     | 0.093                            |
| (TiVZrNbHfTa)N          | FCC-0,4462                                         | 54,0 ±3                  | 400 ±8                  | 0,135                            |

#### Properties of arc-coatings of 4 µm thickness based on Ti-V-Zr-Nb-Hf HEA

| State                                                               | Structure | Lattice<br>paramet | er, nm | <i>H</i> ,<br>GPa | <i>E</i> ,<br>GPa | <i>H/E</i> * | E <sub>calc</sub> ,<br>GPa |
|---------------------------------------------------------------------|-----------|--------------------|--------|-------------------|-------------------|--------------|----------------------------|
|                                                                     |           | Calcul.            | Exper. |                   |                   |              |                            |
| As-cast                                                             | BCC       | 0,3350             | 0.3405 | 4.2               | 95                | 0,047        | 116                        |
| Coating in<br>vacuum 10 <sup>-4</sup>                               | BCC       | 0.3350             | 0,3264 | 8,1               | 130               | 0,077        | 116                        |
| Coating at<br>N <sub>2</sub> partial<br>pressure<br>$P_N = 0,66$ Pa | FCC       | 0.4532             | 0,4462 | 64.0              | 620               | 0,138        | <b>460</b>                 |

# Structure of Ti-V-Zr-Nb-Hf coating obtained by the arc deposition in vacuum (N<sub>2</sub> partial pressure of 0.66 Pa)



#### Comparative physical-mechanical properties of diamond and high entropy nitride coating obtained by indentation



## Normalized Hardness of different materials

INDENTATION EQUATION  $H / E^* = K \cdot (hs / hc)$ 



## Conclusions

- Non-obvious solid solution hardening is connected with:
  - a) Pico-level lattice distortions.
  - b) Nanoclusters in solid solution
  - c) New features of GB-engineering in multi-component systems
- Temperature dependencies of yield stress demonstrate extended athermal plateau due to reasons listed above and may be due to sluggish diffusion and DSA
- New heat resistant multi-component (High-Entropy) alloys with a density of 3.8–4.0 and 7.4–7.8 g/cm<sup>3</sup> can be created
- HEAs can be a good base for a new generation of heat resistant composites
- Prospective direction is a search of new radiation resistant multicomponent alloys consisted of low active elements

#### Thank you for attention !



#### **Activation volume**



#### **Activation energy for dislocations movement**

