Cyclic viscoplasticity modelling of high temperature fatigue for 9Cr ferriticmartensitic steels

S B Leen Mechanical Engineering, NUI Galway, Ireland

- Background and context
- Materials and testing:
 - High-temperature, low-cycle fatigue (HTLCF) and thermomechanical fatigue (TMF)
- Modelling
 - Unified cyclic viscoplasticity, crystal plasticity (CP), physically-based
- Conclusions and perspectives

David J.C. MacKay. Sustainable Energy – without the hot air. UIT Cambridge, 2008.

The rise of wind energy

2016

M. G. Salameh, Applied Energy (2003) WindEurope.org

Clean, efficient, sustainable energy

Adapted from: Abson and Rothwell, Int. Materials Reviews, 58 (2013) 437-473

Ultra-super critical power generation

Potirniche, G, U. of Idaho, Nuclear Energy University Programs, 2013

Cyclic degradation of power plant

TMF-accelerated microstructural degradation and crack formation due to increased flexible operation.

Next generation power plant materials

	AI	В	С	Со	Cr	Mn	Мо	N	Nb	Р	Si	V	W
P91	0.007	-	0.10	-	8.48	0.42	0.94	0.058	0.07	0.013	0.26	0.204	-
MarBN	-	0.018	0.081	3.10	9.08	0.51	-	0.065	0.055	-	0.31	0.2	3.13

MarBN composition: Abe et al., 2008

Need for higher temperature materials

Fatigue behaviour of MarBN...

A through-process materials design tool for welds Plant life Chemical Normalisation composition assessment HAZ Tempering /wm\\PM Martensitic transformation Component level Heat treatment -MarBN ES-P91 modelling simulations Time (hr) Welding process Identify initial analysis conditions Realistic plant SEM/TEM geometries and loading validation 600 500 Validation via e (°C) 400 Creep TMF/creep test Physically-based 300 -Stub Pipe data macro-scale Temperature

emperature (°C)

a 200 -Header Wall material model Temperature 100 5 10 15 20 Meso-micro-Time (hrs) Oxidation-corrosion mechanical Extrusions 8 pile-ups from GB-PSB interaction fatique-creep Multi-scale modelling approach modellina damage model Fatigue OÉ Gaillimh **UNIVERSITY** of LIMERICK NUI Galway Adapted from R Barrett, PhD Thesis, NUI Galway, 2016

Heat treatment of MarBN and P91

SEM of MarBN and P91

HTLCF Testing

- Strain-controlled cyclic testing
 - Stress-control
- Water cooled hydraulic pull-rods
- Servo-electric actuator
- Furnace with maximum temperature of 1000 °C
- High temperature axial gauge extensometer
- FT Console and LCF3 software for HTLCF testing

Test Type	Strain-range (%)	Strain-rate (%/s)	Waveform	
HTLCF	+0 E	0 1 0 01	$R_{\varepsilon} = -1$	
650 °C	±0.5	0.1, 0.01	(Triangular)	
	±0.5	0.1, 0.0333, 0.01	D _ 1	
	±0.4	0.033, 0.01	$\Lambda_{\varepsilon}1$	
600 C	±0.3	0.033, 0.01	(mangular)	
Cyclic Dwell	+0 E	0.1	1 hour hold period	
600 °C	±0.5	0.1		

emperature	Strain Strain		Wave time	Heating/	Waveform	Phase	Test Type	Specimen	Comment
(°C)	Rate (%/s)	Range (±%)	(s)	Cooling			··· //··	Туре	
(0)				rate (°C/s)					
400-600	0.01	0.5	320	2	R_{ϵ} = -1 Triangular	In-phase	Anisothermal	Hollow	2 min Hold
	0.01	0.5	320	2	R_{ϵ} = -1 Triangular	Out-of-phase	Anisothermal	Hollow	2 min Hold
	0.0333333	0.5	180.00006	6.66666	R_{ϵ} = -1 Triangular	In-phase	Anisothermal	Hollow	2 min Hold
	0.0333333	0.5	180.00006	6.66666	R_{ϵ} = -1 Triangular	Out-of-phase	Anisothermal	Hollow	2 min Hold
	0.025	0.5	200	5	R_{ϵ} = -1 Triangular	In-phase	Anisothermal	Hollow	2 min Hold
	0.025	0.5	200	5	R_{ϵ} = -1 Triangular	Out-of-phase	Anisothermal	Hollow	2 min Hold

HTLCF Test Results: MarBN

HTLCF and TMF results: ex-service P91

Enhanced cyclic performance of MarBN

Process-induced defects: MarBN fatigue

Unified cyclic viscoplastic model: hyperbolic sine

Unified cyclic viscoplasticity model

Parameter identification

Calibration and validation: P91

Strain-rate effect: P91

Coffin-Manson failure prediction: P91 HTLCF

Damage mechanics for HTLCF

$$Damage: D = 1 - \left[1 - \left(\frac{N}{N_{\rm f}}\right)^{\frac{1}{1-\phi_{\rm f}}}\right]^{\frac{1}{\phi_{\rm f}-1}} \qquad \text{Life Prediction: } \frac{\Delta \varepsilon^{\rm pl}}{2} = \varepsilon_{\rm f}^{\rm i} (2N_{\rm f})^{\rm c}$$

$$\frac{dD}{dN} = \left[\left(\frac{1}{1-\phi_{\rm f}}\right)\left(1 - \left(\frac{N}{N_{\rm f}(N)}\right)^{\frac{1}{1-\phi_{\rm f}}}\right)^{\frac{2-\phi_{\rm f}}{2}-1}\right] \left[\left(\frac{1}{\phi_{\rm f}-1}\right)\left(\frac{N}{N_{\rm f}(N)}\right)^{\frac{\phi_{\rm f}}{1-\phi_{\rm f}}}\right] \left[N_{\rm f}(N) - N\left(\frac{1}{2c(2\varepsilon_{\rm f})^{\frac{1}{c}}}\Delta \varepsilon^{\rm pl\frac{1-c}{c}}\frac{d\Delta \varepsilon^{\rm pl}}{dN}\right)\right] \left[N_{f}(N)\right]^{-2}$$

Damage mechanics for HTLCF: P91 & MarBN

Damage mechanics failure prediction: P91 & MarBN

HTLCF testing of P91 weld repair

(occurring in HAZ-PM interface) at type IV location

Application to premature failure of T-piece

Hierarchical micro*structure*: martensitic 9Cr steels

Dislocation mechanics model

Dislocation mechanics model: P91

Conclusions

HTLCF and TMF experimental and viscoplastic constitutive modelling characterization for ex-service P91 and cast MarBN martensitic steels:

- Part of broad Materials Design Tool (MDT) under development with SFI MECHANNICS project
- Physically-based modelling needed: e.g. cyclic softening (sub-grain coarsening, decrease in dislocation density)
- Multi-scale, multi-physics modelling needed: Inclusions and oxidation are key phenomena for fatigue crack initiation and damage
- Applications to notch specimens and real plant components under realistic thermal loading
- Current work: through-process, physically-based models for welding, heat treatment and thermo-mechanical fatigue

Acknowledgements

This publication has emanated in part from research conducted with the financial support of Science Foundation Ireland under Grant No. 14/IA/2604. The modelling work was supported by the Irish Centre for High-End Computing (ICHEC).

