

RESEARCH AND DEVELOPMENT OF COATINGS FOR ZIRCONIUM FUEL CLADDINGS

V.A. Belous, V.N. Voyevodin, A.S. Kuprin^{*}, V.D. Ovcharenko, R.L. Vasilenko, V.S. Krasnorutskyy, V.A. Zuyok, Ya.A. Kushtym

National Science Center "Kharkov Institute of Physics and Technology", 1, Akademicheskaya St., 61108 Kharkov, Ukraine

European Commission funded International Workshop "Materials resistant to extreme conditions for future energy systems" 12-14 June 2017, Kyiv - Ukraine

Improve the performance of zirconium alloys caused by:

Disability of serious consequences in case of accident and damage to the reactor core (Fukushima-1; Zr + 2H2O = ZrO² + 2H²), integrity of fuel rods under loss of coolant accident (LOCA) type;

New generation LWR => Longer cycles, higher burn-up (>60 GWD/MTU)=> More hard corrosive environment;

Fretting and debris damage of fuel claddings.

ATFC – Accident Tolerant Fuel Claddings for LWR

The goal of ATF development is alternative fuel technologies for further enhance safety and economics of commercial light water reactors.

Two perspective ways to accident tolerant fuel claddings for LWR: Long-term >10 years: new claddings (SiC/SiC composites, FeCrAl, Mo/FeCrAl etc.); **Medium term ≈10 years:** current zirconium alloys with protective coatings (Cr, SiC, FeCrAl etc.)

Research and Development of Coatings for Advanced Zirconium Nuclear Fuel Claddings

E110 (Zr1Nb) alloy is the main cladding material for WWER type reactors

Requirements For Coatings On Zirconium Claddings:

- **High corrosion and radiation resistance at normal operation conditions;**
- **Neutron economy (low cross section of thermal neutrons, the absence of long-lived radioactive isotopes);**
- **High thermal conductivity;**
- **Barrier to hydrogen penetration ;**
- **Improving mechanical properties of claddings;**
- $\sqrt{}$ Oxidation resistance in steam and air up to $T = 1200$ °C;
- **Stability of functional properties at Т = 350…1200 °С**

Zirconium tubes (Zr1Nb alloy) with vacuum arc coatings based on chromium

A.S. Kuprin, V.А. Belous,V.N. Voyevodin,V.V. Bryk, R.L. Vasilenko,V.D. Ovcharenko, E.N. Reshetnyak, G.N. Tolmachova, P.N. V'yugov. Vacuum-arc chromiumbased coatings for protection of zirconium alloys from the high-temperature oxidation in air // *Journal of Nuclear Materials* 465 (2015) 400-406

Development of protective coatings for zirconium claddings in the world

Vacuum arc method for coatings deposition (KIPT)

Schematic diagram of the cathodic arc evaporation method

Vacuum arc deposition method has advantages :

 \triangleright a wide range of metallic and ceramic coatings;

multi-layer, multi-component and nanostructured coatings;

- \triangleright a high degree of ionization(30-100%);
- low deposition temperature (≤500 °C);
- \triangleright high deposition rate and high quality coatings (1-30 mkm/h).

Photo of plasma stream from cathode

Methods of the investigations

Structure analysis - SEM, ТEМ, XRD;

Concentration of elements – EDX, XRPA, NRA;

Mechanical characteristics of coatings and surfaces – nanoindentation;

Mechanical characteristics of tubes – tensile test;

Saturation by hydrogen or deuterium from the gas phase;

Corrosion – electrochemistry; autoclave; thermocycling test in steam and air.

Samples of Zr-1Nb claddings with coatings

Samples of Zr-1Nb claddings : Ø -9.2 mm; wall thickness -0.7 mm; length -10 mm. **Oxidation resistant nitride and metallic vacuum arc coatings with thickness ~10 μm.**

Chromium coatings on E110 alloy claddings

Photo of a tube fragment with Cr coating SEM image of coating cross section on tube

The chromium coating has a dense structure without pores and cracks

TEM image of coating structure and crystallites sizes

Crystallite size in the coating is near 500 nm

Properties of the Zr1Nb claddings with coatings

 \Box

 $Zr1Nb$

TiN

250

Исходный \overline{A} $\overline{5}$ 6 **Nitride coatings increase the tensile strength** $σ$ **_{***β***} from 12 to 21% at 350 ° C.**

 $Ti+TiN$ $Zr+ZrN$

TiAIN

TIAISIN TIAIYN

8

Anodic polarization curves for Zr-1Nb alloy with coatings in the reactor water T=20 °C.

Hardness of initial Zr1Nb alloy and vacuum arc coatings

Vacuum-arc nitride coatings increase the resistance of zirconium alloy to electrochemical corrosion in reactor water;

Coatings have higher mechanical characteristics compared to uncoated zirconium alloys that should provide

Barrier properties of coatings against deuterium penetration

Zr1Nb alloy with CrN, CrAl and Al2O³ coatings saturated with deuterium Р = 10-3 Pa, t= 120 min.

Energy dependences of integral proton yields for Zr1% Nb with and without coatings saturated with deuterium at temperatures of 350, 450 and 550 °C for 2 hours.

Zr1Nb+CrN **CrN, CrAl and Al2O³ coatings serve as a barrier against the penetration of deuterium into zirconium in the investigated temperature range from 350 to 550 °C.**

Depth distribution of implanted deuterium with energy 15 keV/D at 350 °С, dose 1·10¹⁷сm-2 .

Saturation of E110 alloy with Cr/CrN coatings by hydrogen from the gas phase was carried out at a temperature of 420 °C for 50 hours.

Cylindrical samples : \varnothing **-9 mm, L – 10 mm; Cr/CrN coatings with different thicknesses : 9 and 14 μm**

Concentration of hydrides measured on the metallographic cross-sections of the samples after tests using optical microscopy:

Coated (9 μm) – **100** ppm

E110 – 240 ppm $\frac{100 \text{ pm}}{400 \text{ pm}}$ Coated (14 μm) – $\frac{85 \text{ ppm}}{400 \text{ pm}}$

10 Cr/CrN coatings with thickness ~14 μm reduce the concentration of hydrogen in zirconium alloy E110 from 240 to 85 ppm after the test in a hydrogen atmosphere.

Oxidation of claddings with coatings in air at 750, 1000, 1100 °С

Coatings provide Zr-1Nb alloy protection from the oxidation in air for 1 h up to 1100 °С. The best result demonstrates Cr coating.

Oxidation of Zr-1Nb with Cr coating in air at T = 1100 °C, t= 1 h

High oxidation of the alloy E110 occurs to the depth of ~ 150 μm with formation of a monoclinic cracking ZrO² film;

 Cr2O3 oxide film is formed up to the depth of 5 μm and the there is no phase of ZrO² in the chromium coating.

12

Thermocycling oxidation of coated claddings in steam at 1020 °С

Weight gain of samples after thermocyclic (3 times for 20 min) tests in the steam flow at 1020 °С

Only metallic coatings protect Zr1Nb after thermocyclic test

Oxidation of fuel rod models with coatings at 900 °C in steam

corrosion resistance in steam is 10 times better than without coating ; lower increasing in tube diameter.

Cyclic oxidation of fuel rod models with protective coatings in steam

Thermal cycling test: model fuel rods with internal pressure of 20 atm., holding for 1 min at test temperature, cooling to 100 °C; repeat 10 cycles at each temperature.

Thermal cycling tests of fuel claddings models with coatings in steam at T = 600 - 900 °C

- In the initial Zr1Nb cracking and delaminating of oxide after temperature cycling testing observed ;

- Cr and Cr/CrN coatings demonstrate the best result without cracking and delamination.

Autoclave tests of E110 model fuel rods with coatings, T=350 °C, pressurized water P=150 atm., WWER water chemistry

Cr and Cr/CrN coatings demonstrate excellent corrosion resistance in normal operation conditions

ATFC now is the one of the main safety task in reactor materials science;

Vacuum-arc nitride and metallic coatings were designed and tested on zirconium fuel claddings in the concept of development ATFC in KIPT;

Coatings improve the mechanical properties (hardness and tensile strength) of zirconium tubes, increase the corrosion resistance and reduce the amount of absorbed hydrogen;

Vacuum arc coatings reduce the oxidation rate of zirconium alloy under high-temperature steam environment and in the air up to 1100 °C;

Zirconium claddings with chromium coatings showed the best resistance at high temperature (600-1100 °C) tests;

Zirconium tubes with Cr and Cr/CrN coatings have high corrosion resistance in nominal conditions and in the event of an accident.

Publications

- 1. A.S. Kuprin, V.А. Belous,V.N. Voyevodin,V.V. Bryk, R.L. Vasilenko,V.D. Ovcharenko, E.N. Reshetnyak, G.N. Tolmachova, P.N. V'yugov. Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air // *Journal of Nuclear Materials* 465 (2015) 400-406
- 2. P.I. Stoev, V.A. Belous, V.N. Voyevodin, A.S. Kuprin, S.A. Leonov, V.D. Ovcharenko, M.A. Tikhonovsky, V.M. Horoshih. Mechanical properties and acoustic parameters tubes of zirconium alloy Zr1%Nb with a protective coatings // *Problems Of Atomic Science And Technology* 2015. №5(99), p. 87 – 97
- 3. I.E. Kopanetz, G.D. Tolstolutskaya, A.V. Nikitin, V.A. Bilous, A.S. Kuprin, V.D. Ovcharenko, R.L. Vasilenko. The effect of Cr, Cr-N and Cr-Ox coatings on deuterium retention and penetration in zirconium alloy Zr-1Nb // *Problems Of Atomic Science And Technology* 2015. №5(99), p. 81 -86
- 4. G.D. Tolstolutskaya, I.E. Kopanetz, V.V. Ruzhytskiy, V.A. Bilous, A.S. Kuprin, V.D. Ovcharenko, R.L. Vasilenko, S.A. Leonov. Decrease of hydrogen saturation of zirconium alloys at modification of surface by complex ion-plasma treatment // *Problems Of Atomic Science And Technology* 2015. №2(96), p. 119-123.
- 5. A.S. Kuprin, V.A. Belous, V.V. Bryk, R.L. Vasilenko, V.N. Voyevodin, V.D. Ovcharenko, G.N. Tolmachova, I.V. Kolodiy, V.M. Lunyov, I.O. Klimenko. Vacuum-arc chromium coatings for Zr-1Nb alloy protection against hightemperature oxidation in air // *Problems Of Atomic Science And Technology* 2015. №2 (96), p. 111-118.
- 6. A.S. Kuprin, V.A .Belous, V.N. Voyevodin, V.V. Bryk, R.L. Vasilenko, V.D. Ovcharenko, G.N. Tolmachova, P.N. V'ygov. High-temperature air oxidation of E110 and Zr-1Nb alloys claddings with coatings // *Problems Of Atomic Science And Technology* 2014. №1(89), p. 126-132
- 7. V.A. Belous, P.N. V´ygov, A.S. Kuprin, S.A. Leonov, G.I. Nosov, V.D. Ovcharenko, L.S. Ozhigov, A.G. Rudenko, V.T. Savchenko, G.N. Tolmachеva, V.M. Khoroshikh. Mechanical characteristics of Zr1Nb alloy tube after deposition of ion-plasma coatings // *Problems Of Atomic Science And Technology* 2013. №2(84), с. 140-143*.*

KIPT is widely open for common research in ATFC area!

Thank for your attention!