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Defect-driven diffusion of impurities is the major phenomenon leading to formation of embrittling
nanoscopic precipitates in irradiated reactor pressure vessel (RPV) steels. Diffusion depends strongly
on the kinetic correlations that may lead to flux coupling between solute atoms and point defects.
In this work, flux coupling phenomena such as solute drag by vacancies and radiation induced
segregation at defect sinks are systematically investigated for 6 bcc iron–based dilute binary alloys,
respectively containing Cr, Cu, Mn, Ni, P and Si impurities. Firstly, solute–vacancy interactions
and migration energies are obtained by means of ab initio calculations; subsequently, Self Consistent
Mean Field theory is employed in order to determine the exact Onsager matrix of the alloys. This
innovative multi-scale approach provides a more complete treatment of the solute-defect interaction
than previous multifrequency models. Solute drag is found to be a widespread phenomenon that
occurs systematically in ferritic alloys and is enhanced at low temperatures (as for instance RPV
operational temperature), as long as an attractive solute–vacancy interaction is present, and that
the kinetic modeling of bcc alloys requires the extension of the interaction shell to the second nearest
neighbors. Drag occurs in all alloys except Fe(Cr); the transition from dragging to non–dragging
regime takes place for the other alloys around (Cu, Mn, Ni) or above (P, Si) the Curie temperature.
As far as only the vacancy–mediated solute migration is concerned, Cr depletion at sinks is foreseen
by the model, as opposed to the other impurities which are expected to enrich at all temperatures
(P, Ni) or below a rather high temperature (Si, Cu, Mn). The results of this study confirm the
current interpretation of the hardening processes in ferritic–martensitic steels under irradiation.

INTRODUCTION

Solute diffusion in alloys is predominantly mediated
by defect-driven mechanisms, that is through vacancy
exchange and interstitial migration. Especially in irradi-
ated materials, the defect concentrations can be consider-
ably larger than in thermal equilibrium and solute diffu-
sion can then be strongly enhanced or even induced. Ac-
cording to the binding or repulsive nature of the solute–
point defect (PD) interaction, kinetic correlation effects
can arise and coupled solute–PD fluxes can lead to an ac-
celeration of thermodynamic–driven diffusion (radiation–
enhanced effect) or to the net flux of solute atoms even in
the absence of thermodynamic driving forces for the so-
lute (radiation–induced effect). Flux coupling is of great
importance in any metallurgical process in which an ac-
curate microstructural characterization of the material
is needed, as for instance in phase transformations dur-
ing heat treatments [1, 2]. A precise description of the
diffusion mechanisms is essential for a correct modeling
of driven systems because both phase transitions and
stationary states depend on the alloy diffusion proper-
ties. In addition, flux coupling is fundamental for un-
derstanding the nano– and microstructural evolution of
irradiated materials. For instance, it plays a key–role in
radiation induced segregation (RIS) of solute atoms at

sinks. Recently, a systematic experimental RIS study of
several irradiated ferritic–martensitic alloys in the low–
temperature regime showed that many impurities con-
sistently enrich at grain boundaries [3]. It is mentioned
that this behavior can be explained in terms of balance
between vacancy– and interstitial– mediated diffusion.
This issue can be analyzed and solved if the transport
coefficients (or Onsager matrix) of the system are known
[4].

An important example of irradiated alloys is repre-
sented by reactor pressure vessels (RPV) steels, whose in-
tegrity is affected by the microstructural changes induced
by the neutron–induced defect population. In particu-
lar, hardening and consequent embrittlement due to the
formation of nanofeatures inside the steel is regarded as
the most serious concern for the reactor lifetime. These
nanofeatures consist of matrix damage (small voids and
dislocation loops) or defect–impurity clusters. They orig-
inate from the PD produced by incident neutrons and
their interaction with the alloy constituents. Both types
of damage hinder the movement of dislocations and con-
sequently increase the RPV ductile–to–brittle transition
temperature (DBTT). In particular, Mn–Ni–Si–rich pre-
cipitates have been recently observed in RPV surveillance
tests to be the cause of a further unexpected DBTT shift
[5, 6]. Intergranular segregation of impurities like phos-
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phorus is, among others, a secondary but non–negligible
embrittling phenomenon occurring under irradiation [7].
The investigation of the phenomena inducing solute clus-
tering even in undersaturated conditions has been carried
on since the early stages of nuclear power plant operation,
but is still missing an exhaustive explanation.

RPV–like steels are usually body–centered cubic (bcc)
ferritic dilute alloys, with varying concentrations of Cu,
Mn, Ni, Si, P, Cr and other minor impurities [8, 9]. Al-
though they have been extensively studied, a systematic
investigation of flux coupling is still missing. This work
aims at covering this gap. The issue is tackled with model
binary alloys, in order to identify the inherent transport
properties of each solute species in bcc iron. Six alloys
are selected for this purpose (Fe–X, with X=Cu, Mn, Ni,
P, Si and Cr), in reference to the solute atoms that are
usually observed in nanoclusters [5, 10]. In addition to
those, Cr is of great interest mainly for the upcoming
Generation IV reactor vessels and other structural mate-
rials, although in non–dilute concentrations.

A very small number of experimental studies are de-
voted to binary model alloys. The observation of irradi-
ated iron dilute alloys seems to indicate that a strong
kinetic correlation between vacancies and Mn, Si, Ni,
Cu and P solute atoms is the trigger for solute–vacancy
cluster agglomeration and accelerated void growth [11].
A strong kinetic correlation between PD and Mn so-
lute atoms was also advanced as cause for the formation
of Mn–rich clusters observed around dislocation loops
[12, 13], and in such cases the contribution of vacancy
versus interstitial diffusion is still to be determined.

Such issues can be properly assessed by computing the
transport coefficients (Lij). From these quantities, flux
coupling between different atomic species can be easily
inferred. In a near equilibrium system, the flux of each
species can be written as

Ji = −
N∑
j=1

Lij
kBT

∇µj , (1)

or in other words as a linear combination of the ther-
modynamic driving forces ∇µj acting on all species, in-
cluding PD. The Lij coefficients are therefore expressions
of the kinetic response of the system to an external so-
licitation and allow for a clear separation between ther-
modynamic and kinetic properties of the alloy. More-
over, the off–diagonal coefficients Lij,i 6=j emphasize the
kinetic coupling that may appear between fluxes of dif-
ferent atomic species, for instance between solvent and
solute atoms, which would be missed by ’traditional’ dif-
fusion coefficients.

The Lij:s can be inferred from experimentally mea-
sured tracer diffusion coefficients with Darken’s [14] or
Manning’s [15] theories, but none of them are able to
provide an accurate estimation of the crucial off–diagonal
coefficients, and systematically predict such coefficients

to be positive. Alternatively, the Lij:s can be obtained
starting from microscopic jump frequencies that can be
computed either with interatomic potentials [16–18] or
through density functional theory (DFT) calculations
[19–22]. Such frequencies can be then used as parame-
ters for atomistic Monte Carlo simulations [23] or analyt-
ical multifrequency models [24]. Monte Carlo simulations
can be effective but become computationally demanding
when complex solute–defect interactions are present. On
the other hand, the analytical models developed in the
so–called multifrequency framework that are available in
the literature take into account only 1nn solute–vacancy
interactions (SVI), or 2nn interactions to a partial extent
[25, 26]. In the latter case, the flux coupling prediction
capability is considerably hampered by strong approxi-
mations in the microscopic jump rates. Later on, a more
general and flexible Self–Consistent Mean Field (SCMF)
method was developed, initially for vacancy–mediated
diffusion in concentrated ideal solid solutions [27], then
in non–ideal alloys [28], and finally for interstitial diffu-
sion [29, 30]. Its main advantage is to yield exact trans-
port coefficients in dilute alloys; moreover, it can be ex-
tended to any range of solute–defect interactions, its self–
consistency being ensured by an appropriate choice of the
amount of unknowns. The reliability of the SCMF the-
ory is assured by its perfect agreement with Monte Carlo
simulations in generic AB alloys, for both vacancy– [28]
and interstitial–mediated diffusion [29]. More recently, it
was successfully employed to analyze the conditions for
the onset of vacancy drag in bcc [31] and fcc [32] alloys.
These works have highlighted the importance of the near-
est neighbor (nn) shells beyond the first one for a correct
prediction of flux coupling, as opposed to many studies
where only 1nn interactions were considered [33, 34].

On the modeling side, flux coupling was investigated
for the Fe(P) system by molecular dynamics simulations
based on an interatomic potential [16]. In this case it
was shown that a strong kinetic correlation with both
vacancies and interstitials lets P migrate quickly to PD
sinks. Furthermore, kinetic Monte Carlo (KMC) sim-
ulations of the Fe(Cu) system confirmed the possibility
of Cu–vacancy drag at low temperatures. To the au-
thors’ knowledge, the only referenced case in which a full
set of transport coefficients was derived for the Fe–X di-
lute alloys object of this work was a study on the Fe(Cr)
and Fe(Ni) systems by Choudhury et al. [22]. They ap-
plied an approximated multifrequency model where 2nn
SVI were only partially considered, and concluded that
no solute drag was expected for either solute. Solute
drag phenomena are known to be strongly related to at-
tractive solute–vacancy binding energies. Calculations of
such binding energies in Fe dilute alloys [35] corroborate
this conclusion in Fe(Cr) alloy, but not in Fe(Ni). Indeed
the prediction of no drag effect in Fe(Ni) is in contradic-
tion with the idea that binding SVI at first and second
nn sites lead to solute drag phenomena.
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In this work, the SCMF method is applied to dilute
ferritic alloys in order to provide an exact prediction of
the flux coupling tendencies between solutes and defects.
The Onsager matrix is computed for each of the selected
dilute alloys from a set of DFT-computed jump frequen-
cies. The obtained phenomenological coefficients are then
used to discuss solute drag as function of temperature,
to predict RIS tendencies and to obtain solute diffusion
coefficients for the sake of comparison with experimental
values. Only the case of vacancy mediated diffusion is
considered, and the issue of interstitial mediated diffu-
sion is left for a future work.

The paper is organized as follows. The following sec-
tion is dedicated to the first principle computation of
solute–vacancy interaction energies and jump frequen-
cies. The focus is then moved to the mean field treatment
of the obtained jump frequencies in the SCMF frame-
work. Finally, the computed Lij:s, vacancy drag, diffu-
sion coefficients and RIS tendencies are shown in the last
section and are analyzed in terms of physical implications
on the RPV microstructural evolution.

AB INITIO STUDY

Definition of jump frequencies

The phenomenological coefficients related to vacancy–
mediated diffusion can be derived in terms of microscopic
vacancy jump frequencies. These jump rates depend on
the activation energy that is needed for one surrounding
atom to move into a vacant site. In the framework of
transition state theory, a jump frequency ωij for an atom
moving from site j to a vacant site i is defined as [36]:

ωij = νij exp

(
−
Emig
ij

kBT

)
. (2)

The attempt frequency νij is related to the lattice vibra-

tional modes, whereas the energy barrier Emig
ij depends

on the type of moving atom and the local chemical en-
vironment around the moving atom-vacancy pair. In a
binary dilute alloy, solvent and solute atoms are char-
acterized by different migration barriers, and the corre-
sponding jump frequencies are referred to as ω0 and ω2, in
accordance to LeClaire’s nomenclature [24]. Moreover, if
a strong solute-vacancy interaction exists, the jump rates
of the solvent atoms in the vicinity of the solute-vacancy
pair are considerably affected.

The set of jump frequencies that need to be calculated
depends on the spatial extent of the SVI. For instance,
for bcc dilute alloys, Le Claire [24] showed that 4 jump
types are needed if only the 1nn SVI is considered, or
9 jump types when the 2nn SVI is introduced. How-
ever, the 2nn analytical models derived from Le Claire’s
framework [25, 26] are approximated to such an extent
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FIG. 1. Network of the 12 Fe-V jump frequencies affected by
the presence of a solute atom, for solute–vacancy interactions
extending to the 5nn distance. The solute–vacancy exchange
is labeled with ω2, while ω0 represents the unaffected Fe-V
jump frequency (not shown).

that the flux coupling tendency is considerably underes-
timated, as explained in the following section.

In principle, nothing is limiting the spatial extent of the
SVI, but in practice the range must be limited in order
to have a finite set of jump frequencies. The choice of a
cutoff distance depends not only on the extent of the SVI,
but also on the kinetics of the targeted phenomenon: in
the case of solute drag by vacancies, the paths leading to
a possible drag mechanism are multifold and can involve
distances beyond the 2nn position [31]. Moreover, some
of the impurities of interest present a non-negligible SVI
at the 5nn distance [37]. Hence, the interaction shell
was extended in this work to 5nn sites, which entails the
definition of 12 forward-backward jump types, as shown
in Fig. 1.

Ab initio calculations based on DFT represent an accu-
rate way of obtaining zero–temperature interaction ener-
gies, migration barriers and attempt frequencies. Finite–
temperature effects, such as the influence of magnetic
disordering on ωij , must be explicitly introduced in order
to extrapolate the diffusion properties to higher tempera-
tures, as was done for instance in [38]. Other approaches,
such as the development of alloy interatomic potentials,
can be pursued. Such potentials are however fitted ei-
ther on ab initio data or experiments. Therefore, they
are valid only for the specific system they were devel-
oped for and need a cutoff distance beyond which the
interatomic interactions are set to null. On the other
hand, in DFT calculations there is no assumption on the
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potential range. Therefore, the SVI trends as function of
nn distance must be investigated in order to estimate at
which distance they become negligible.

Ab initio methodology

The first principle calculations in this work were per-
formed with the Vienna ab initio simulation package
(vasp) [39–41]. As part of the ab initio procedure, the su-
percell relaxation allowed for the determination of solute–
vacancy binding energies, which represents a partial hint
of whether a solute atom is likely to follow a vacancy
during the diffusion process.

DFT is employed in order to compute the bulk prop-
erties in pure iron and a full set of SVI energies and mi-
gration barriers for the Fe(Cr), Fe(Cu), Fe(Mn), Fe(Ni),
Fe(P) and Fe(Si) dilute binary alloys. The calculations
were performed on a plane–wave basis, employing the
pseudopotentials developed within the projector aug-
mented wave (PAW) method [42, 43]. The exchange
correlation function was described through the Perdew-
Burke-Ernzerhof (PBE) parameterization [44] of the gen-
eralized gradient approximation (GGA). All calculations
were spin polarized and the Vosko–Wilk–Nusair (VWN)
algorithm [45] was used for the spin interpolation of the
correlation potential. The Brillouin zone was sampled
with the Monkhorst–Pack scheme.

The simulations were carried out on a 128–atom bcc
supercell with full periodic boundary conditions. A plane
wave cutoff of 300 eV and a 3× 3× 3 k–point mesh were
chosen, in accordance with the convergence tests of a
previous study [46]. The defects were introduced allowing
for atomic relaxations but restraining the cell shape and
volume. In pure iron, the vacancy formation enthalpy
is computed as Eform

v = E(N − 1) − (N − 1)/N · E(N),
where E(N) is the energy of the undefected supercell
and E(N − 1) that of the system containing a vacant
site. The further introduction of a solute atom yields the
solute–vacancy binding energy (at the X-nn distance):

EbV,Xnn = EN−2
1V, 1sol (Xnn) − E

N−1
1V − EN−1

1sol + EN , (3)

where the terms on the right-hand side are the energies of
the supercell respectively with one substitutional solute
atom and one vacancy, with only one vacancy, with only
one solute atom and without any defect.

The nudged elastic band (NEB) method [47, 48], im-
plemented with 3 images and the climbing–image algo-
rithm [49], was employed for the evaluation of the system
energy at the saddle point for all jump configurations. In
the climbing–image algorithm, 3 images are sufficient for
an accurate evaluation of the saddle point energy [50],
since all barriers here investigated are of single hump
shape. The migration barriers are defined as energy dif-
ference between the saddle point and the initial state.

Each NEB simulation yields the migration energy of a
forward jump (Emig

ij = Eijsad − Eirelax) and its backward

counterpart (Emig
ji = Eijsad − E

j
relax). The uncertainty re-

lated to the computed binding energies and migration
barriers is estimated to about 5 meV.

The standard potentials available in the vasp library
were employed for all involved chemical elements. Con-
cerning the calculations in the Fe(Mn) alloy, it was previ-
ously reported that some NEB simulations did not con-
verge to a physically meaningful magnetic state [37] and
led to anomalously high migration barriers (> 1 eV) [51].
A similar issue was encountered in the Fe(Si) alloy. Once
more, the system was successfully driven to the correct
global minimum with the use of linear mixing in the start-
ing guess of the charge dielectric function, as opposed to
using the Kerker model [52, 53].

The jump frequency prefactor ν∗i might also be com-
puted ab initio, by means of frozen phonon calculations
and the application of Vineyard’s theory [36]. The same
calculations allow as well for the computation of the va-
cancy formation entropy [54]. However, this is beyond
the scope of this work since the drag tendencies are
weakly affected by the attempt frequency value [55], as
long as the latter is the same for all jump types. Hence,
the attempt frequency is assumed to be the same for all
kind of jumps and of the same order of magnitude of the
Debye frequency in iron: 6 THz [56].

Ab initio results

The bulk properties of pure iron are reported in Table
I. The computed equilibrium lattice parameter is consis-
tent with previous vasp calculations [35, 57]. The total
vacancy diffusion activation energy in pure iron of 2.88
eV is in line with previous DFT calculations [58, 59] and
close to the experimental value of 2.95 eV [60]. The va-
cancy formation entropy was computed with DFT by Lu-
cas et al. [61]. Their larger value of 4.1kB with respect to
previous calculations [62, 63] is anyway consistent with
the total value for formation and migration entropy of
5kB found in another study [64]. However, the entropy
of migration is neglected in this work.

The binding energies obtained by supercell relaxation
with the vasp code are reported in Fig. 2. The solutes
are ordered from the strongest binding (P) to the weakest
(Cr). It is evident that all solutes, with the exception
of Cr, present a strong binding character with vacancies,
which confirms the findings of previous DFT calculations
[35]. As already argued in the same reference, the binding
character for the transition metals in the 3d group is most
likely caused by a strong magnetic coupling. For the
oversized impurities (Cu, Mn, Ni) the strong interaction
arises also because of strain relief in the matrix.

The general agreement with previous computations
and experimental data is quite satisfactory. A minor dif-



5

TABLE I. Bulk properties (computed or adopted in this work), compared with experiments and previous calculations.

Quantity This work Previous calculations Experiments

Lattice parameter a0 2.831 Å 2.83 Å[a] , 2.86 Å[b] 2.86 Å[k]

Vacancy formation enthalpyHf
v 2.18 eV 2.20 eV[c], 2.02 eV[d], 2.16 eV[e] 1.60 eV[l], 2.0 eV[m]

Vacancy migration energy Emig
v 0.70 eV 0.67 eV[c], 0.65 eV[d] 0.55 eV[n]

Ferromagnetic activation energy QF
v 2.88 eV 2.87 eV[c], 2.67 eV[d] 2.95 eV[o], 2.88 eV[l]

Vacancy formation entropy Sf
v 4.1kB

[e] 1.5-2.0kB
[f], 2.1kB

[g], < 5 kB
[h]

Attempt frequency ν∗
0 6 THz 91.5 THz[i], 4.9 THz[j]

[a] Reference [35]. [f] Reference [63]. [k] Reference [56].
[b] Reference [57]. [g] Reference [62]. [l] Reference [65].
[c] Reference [59]. [h] Reference [64]. [m] Reference [66].
[d] Reference [58]. [i] Reference [67]. [n] Reference [68].
[e] Reference [61]. [j] Reference [19]. [o] Reference [60].

ference is related to Cu, for which previous computations
performed with the Ultra Soft Pseudo-Potential (USPP)
yielded a stronger interaction at 2nn than 1nn. Concern-
ing the experimental measurements, the 1nn and 2nn can
not be distinguished in bcc crystals, due to their simi-
lar relative distance. Furthermore, the Cr experimental
value that is shown in Fig. 2 represents the upper bound
of the interaction energy [69] and is therefore in agree-
ment with this work’s calculations.

The interaction is strong up to the 2nn distance, be-
yond which it abruptly drops to zero. This is due to the
relatively short distance between second nearest neigh-
bors in bcc crystals, with respect, for instance, to that in
the fcc structure. The anomalous behavior shown by Ni,
namely the stronger 2nn interaction, was also observed
for cobalt [35]. The reason is to be investigated by a
more in-depth analysis of the magnetic coupling that is
beyond the scope of this paper. In general, the binding
character of the solute–vacancy interaction is a hint that
dragging by vacancies is likely to occur, although it is
not possible to state a priori its strength and tempera-
ture dependence.

In some cases (Cu, Mn, Ni) there exists a weak at-
traction between solute and vacancy at the 5nn distance.
This residual interaction is caused by elastic interactions
among the atoms lying on the close-packed 〈111〉 direc-
tion, as the next atom in line (10nn) is also characterized
by a slightly higher binding energy than the 9nn or 11nn
(not shown in the graph). In order to investigate the
effect of this non-negligible interaction, the thermody-
namic model for the computation of the transport coef-
ficients was therefore extended to the 5nn. Models ne-
glecting the 2nn interaction are likely to yield unreliable
results, given the strong 2nn interaction in most of the
studied alloys.

The following step is the calculation of the migration
barriers for the network of 12+2 jump frequencies (for
each impurity) described in Fig. 1. Table II shows the
energy barriers obtained via NEB calculations. They are
also compared to previous computations performed with
different DFT parameters [19, 22, 50, 51] and with DFT
calculations performed with the siesta code [59]. In ad-
dition, the same migration barriers are represented in
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FIG. 2. Ab initio solute–vacancy binding energies (in eV) ob-
tained by supercell relaxation, compared with previous calcu-
lations [19, 35, 59, 70, 71] and experiments [69, 72]. Negative
energies stand for attractive interactions.

Fig. 3 as function of the solute-vacancy distance. As ex-
pected, the migration barriers approach the background
value ω0 as the solute–vacancy distance increases, since
the interaction fades out with distance.

Generally speaking, the attractive binding energy leads
to an increment of the dissociative migration barriers and
to a decrement of the associative counterparts. The effect
is more prominent when the binding energy is stronger
(P, Si), whereas all values are close to ω0 in the Cr case.
A higher solute-vacancy association rate than dissocia-
tion means in physical terms that the probability for a
vacancy to abandon the interaction area around the so-
lute is small. Nevertheless, at least another ωij frequency
is necessary for the vacancy to turn around the solute and
yield a net displacement, as observed in the AB model
alloy [31]. Therefore, the calculation of transport coeffi-
cients is unavoidable if one is to investigate the possibility
of vacancy drag.

In most cases, the agreement with previous calcula-
tions is good. The only remarkable exception is repre-
sented by the ω2 frequency for Mn. The much higher
value of 1.03 eV previously reported by Vincent et al.
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[51] and applied to their KMC model was affected by the
problematic convergence of the Mn magnetic state, as
the same authors mentioned. It can be observed that all
here-studied impurities are characterized by a higher mi-
gration frequency, if one assumes the attempt frequency
ν∗2 to be comparable to ν∗0 . In this regards, the result of
Ni is in partial contradiction with the findings of Choud-
hury et al. [22], who observed a higher solute migration
barrier than that of pure iron. This inconsistency can
be related to their smaller supercell size (54 atoms). It
is worth noticing that a higher solute–vacancy exchange
frequency does not necessarily entail a faster impurity
diffusion, as the Dsol/DFe ratio depends on the drag ten-
dency as well.

COMPUTATION OF THE TRANSPORT
COEFFICIENTS

Manipulation of jump frequencies

For practical reasons, the long–ranged SVI must be
cut off at a finite distance in order to limit the amount of
equations of the analytical mean field model. In a dilute
alloy, this entails the distinction between an interacting
area around the solute atom and the background. The
former is represented by the ensemble of atoms located at
a distance from the solute within the chosen interaction
range. The solute-vacancy pair is regarded as associated
(i.e. there exists a non-null SVI) when the vacancy is
inside the interaction area, or dissociated otherwise.

Once the cutoff is introduced, the binding energy be-
yond this distance must be set to null (Eb∞ = 0). This
implies a manipulation of the DFT–computed jump fre-
quencies, in order to respect the detailed balance require-
ments [73]. According to the detailed balance principle,
each elementary transition must be balanced by its re-
verse process in thermodynamic equilibrium conditions.
In general, this means that the forward and backward
transitions between two states i and j occur at the same
rate:

ω
(0)
ij p

(0)
i = ω

(0)
ji p

(0)
j , (4)

where the probability p of each state depends upon the
energy of the state through the classic Boltzmann factor
exp (−E/kBT). In the specific case of atom–vacancy ex-
change, all couples of forward–backward jumps (ωij , ωji)
are bound to this condition. Since the energy of the ini-
tial and final configurations can be expressed in terms of
binding energy difference:

ωij
ωji

= exp

(
−
Ebj − Ebi
kBT

)
, (5)

it follows that Ebi − Ebj = Emig
j − Emig

i , if the attempt
frequencies are assumed to be the same for all jumps.

The practical consequence on the set of DFT–
computed migration barriers is that any sequence of
jumps starting from the same i–nn position and leading
to a dissociation must occur at the same rate:

ω∞i
ωi∞

=
ω∞j
ωj∞
·ωji
ωij

=
ω∞l
ωl∞
·ωlk
ωkl
·ωki
ωik

= . . . ( i, j, k, l ≤ R̂) ,

(6)
where the jump chain can consist of several jumps (i →
∞, i → j → ∞, i → k → l → ∞, and so on). The ∞
symbol marks any nn distance beyond the interaction
zone.

The set of DFT migration barriers is therefore modi-
fied in order to comply to the requirement of null binding
energy beyond R̂. The most straight–forward way is to
keep the ab-initio computed saddle point energy constant
and let the associative frequencies of type ω∞i (i ≤ R̂)

change, so that Emig
∞i is decreased exactly by the bind-

ing energy that is to be neglected. For instance, setting
Eb3 = 0 makes the activation energy of the jump ω31

decrease by the DFT value of Eb3. It is clear that this
approach has little effect on the interaction physics as
long as the binding energies to be neglected are small.
Given the non–negligible values of Eb5, cutting the ther-
modynamic range to the 2nn would lead to a consider-
able modification of the backward frequencies. For this
reason, the cutoff range was set on the 5nn distance, re-
sulting in the jump frequency network shown in Fig. 1.

Several range cutoffs were explored, leading to three
distinct frequency sets, whose performances are com-
pared in terms of drag predictability.

A) 5nn set: all DFT jump frequencies are introduced.
The backward frequencies are modified according
to the procedure described above, so that the bind-
ing energies beyond the 5nn are null.

B) 2nn set: only frequencies related to the 1nn and
2nn are considered (ω12, ω13, ω15, ω24). The back-
ward frequencies are modified in the same fashion
in order to set the binding energies beyond 2nn to
zero. By comparing the 2nn set to the 5nn set, the
influence of Eb5 in terms of vacancy drag can be
determined. This model represents a considerable
advancement with respect to the most advanced ex-
isting 2nn models [25, 26], as the latter assume the
backward jumps ω31, ω51 and ω42 to occur at the
background frequency ω0. As a consequence, the
associative tendency of the vacancy-solute pair is
seriously underestimated.

C) 1nn set: the thermodynamic SVI is truncated to
the first nn sites. The frequencies involved are ω12,
ω13 and ω15. In this case, a unique ω1∞ frequency is
calculated as 7ω1∞ = 3ω12 + 3ω13 +ω15 (and anal-
ogously for ω∞1). Many analytical models avail-
able in the literature (for instance, the 4–frequency
model in [24]) are limited to the 1nn; it is therefore
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TABLE II. Ab–initio migration barriers (in eV) computed in this study and comparison with previous DFT calculations (in
square brackets), according to the jump frequency nomenclature described in Fig. 1.

P Si Cu Ni Mn Cr
ω0 0.70

[0.67]a, [0.68]e, [0.65]f

ω2 0.40 0.51 0.51 0.63 0.42 0.53
[0.34]d, [0.31]g [0.44]c [0.59]e, [0.56]c [0.68]a, [0.70]c [1.03]c [0.58]a, [0.62]b

ω12, ω21 0.68 0.57 0.74 0.55 0.72 0.64 0.59 0.69 0.66 0.61 0.69 0.66
[0.60]d [0.56]d [0.65]c [0.64]e [0.64]e [0.55]a [0.69]a [0.64]c [0.69]a [0.65]a

[0.60]c [0.46]c [0.69]b [0.64]b

ω13, ω31 0.98 0.58 0.89 0.58 0.74 0.51 0.72 0.66 0.70 0.55 0.69 0.64
[0.92]d [0.59]d [0.84]c [0.70]e [0.56]e [0.70]a [0.67]a [0.66]c [0.67]a [0.63]a

[0.67]c [0.69]c [0.69]b [0.63]b

ω15, ω51 0.86 0.47 0.82 0.55 0.67 0.50 0.66 0.62 0.66 0.55 0.67 0.65
[0.68]d [0.34]d [0.65]c [0.63]e [0.53]e [0.62]a [0.59]a [0.62]c [0.64]a [0.62]a

[0.62]c [0.63]c [0.67]b [0.64]b

ω24, ω42 0.74 0.48 0.71 0.58 0.75 0.57 0.80 0.59 0.76 0.64 0.72 0.70
[0.68]d [0.37]d [0.74]e [0.55]e

ω34, ω43 0.66 0.69 0.68 0.67 0.69 0.67 0.70 0.67 0.68 0.66 0.68 0.68
ω37, ω73 0.69 0.70 0.69 0.69 0.69 0.68 0.70 0.68 0.69 0.69 0.69 0.70
ω45, ω54 0.66 0.65 0.67 0.70 0.68 0.77 0.69 0.75 0.69 0.75 0.68 0.71
ω46, ω64 0.68 0.63 0.65 0.66 0.67 0.68 0.68 0.70 0.68 0.69 0.70 0.70
ω48, ω84 0.69 0.67 0.69 0.69 0.70 0.70 0.70 0.70 0.71 0.70 0.71 0.70
ω49, ω94 0.69 0.71 0.69 0.72 0.70 0.70 0.70 0.70 0.70 0.69 0.70 0.70
ω57, ω75 0.69 0.68 0.68 0.65 0.71 0.63 0.70 0.66 0.70 0.65 0.69 0.67

ω5 10, ω10 5 0.67 0.66 0.68 0.65 0.70 0.64 0.71 0.68 0.70 0.67 0.70 0.69
a Reference [22], PAW–PBE. e Reference [59], SIESTA.
b Reference [50], PAW–PBE. f Reference [58], PAW–PW91.
c Reference [51], PAW–PW91. g Reference [16], interatomic potential.
d Reference [19], USPP.

interesting to analyze the accuracy of such a simple
model in terms of solute diffusion by vacancies.

In addition to the 1nn, 2nn and 5nn sets, a further
set was derived from the DFT database by using the
Final Initial State Energy (FISE) approximation. FISE
is an alternative model that is very often employed to
predict migration barriers, when DFT calculations are
not available for all atomic configurations. It was used
in the past under different names [31, 74, 75], as it is
the most commonly employed model in atomistic kinetic
Monte Carlo (AKMC) simulations.

The amount of migration barriers computed in this
work makes possible to assess the reliability of the FISE
approach and the consequences in terms of vacancy–drag
predictability. In this model, the migration barrier Emig

ij

between configurations i and j depends on a reference
migration barrier and the energy difference between the
final and initial state:

Emig
ij = Emig

0 +
Ej − Ei

2
. (7)

Emig
0 usually depends on the jumping species: ω0 for the

host atom and ω2 for the solute. The model always en-
sures fulfillment of the detailed balance condition. The
energy of the end states can be computed through ab ini-
tio relaxations (this work) or many available broken bond

models, whereas the reference migration barrier Emig
0 can

be obtained through several methods (for an extensive re-
view of such methods, see [76]). More advanced models
allow to take into account the local chemical environ-
ment around the jumping atom at the saddle point (see
for instance [50]) in the case of concentrated alloys.

The main issue related to the use of this simple model
is that in reality the energy of the arriving state is not
known a priori. In order to assess its reliability in terms
of jump frequency prediction and diffusion modeling, a
set of jump frequencies is computed based on the DFT
initial and final state energies obtained in this work. Emig

0

is given by the unperturbed Fe-V migration barrier (0.70
eV). Applying Eq. 7 entails that all forward-backward
migration barriers are shifted so that they are symmetric
with respect to ω0.

The four sets of jump frequencies are shown in Fig.
3 for each impurity. It is made a distinction between
forward (full symbols) and backward (blank symbols)
jumps, in order to emphasize the lower probability for
dissociation jumps. It can be observed that the FISE
migration barriers based on DFT–computed end–state
energies are in most cases in disagreement with the NEB
values inside the interaction shell, whereas they agree
quite well beyond the ω24 jump type.
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FIG. 3. Migration barriers (in eV) for Fe-V jumps of type ωij ,
where i is the initial nn position of the vacancy with respect to
the solute, and j the distance after the jump. Backward jumps
(from configuration j to i) are shown with blank symbols.
DFT-calculated values are compared to those obtained with
the Final Initial State Energy (FISE) approach. The modified
barriers for the 1nn and 2nn sets are also shown.

Finite–temperature magnetic model

In order to allow for a comparison with diffusion ex-
periments, which are usually performed at relatively high
temperatures, magnetic disordering must be taken into
account. It is here assumed that the magnetic transition
to the paramagnetic state leads to a progressive reduction
of the self–diffusion activation energyQF0 = Eform

v +Emig
v .

The reduction is proportional to the magnetic excess en-
thalpy Hmag [77]:

Q(T ) = QF0 − αH(T ) . (8)

The normalized coefficient H(T )=1−Hmag(T )/Hmag(0)
is defined so that H=0 at 0 K and H=1 in a perfectly
disordered state. The model yielding the excess enthalpy
Hmag is described in [78]. Short range ordering is repre-
sented as residual magnetization above the Curie temper-

ature. From this definition it follows that α = QF0 −QP0 ,
where QP0 is the activation energy in fully paramagnetic
state. Such a value can be inferred from experiments
or computed with first-principle methods. In this work,
QP0 = 2.26 eV is taken from the ab initio calculations by
Chang et al. [77]. It is worth noticing that this mag-
netic effect appears as the same multiplicative factor in
all Onsager coefficients. It therefore does not affect the
drag coefficient given by the ratio LBV /LBB . Although
this magnetic model was devised only for self-diffusion
in pure iron and fitted to self–diffusion experiments, it
is assumed that the presence of one solute atom has a
negligible effect on the magnetic transition.

SCMF model

The sets of jump frequencies are used as input param-
eters for the calculation of the transport coefficients, in
the framework of the Self Consistent Mean Field (SCMF)
theory. The interested reader can find in [27, 28, 31] fur-
ther details about the SCMF model and its solution.

One of the main features of the SCMF method is the
distinction between thermodynamic and kinetic inter-
atomic interactions. The former determine the probabil-
ity of a certain crystal configuration to occur in thermo-
dynamic equilibrium conditions, and correspond to the
binding energies shown in Fig. 2. As already discussed,
a range cutoff has to be imposed in practice and is dif-
ferently chosen in the aforementioned frequency sets.

The kinetic interactions are fictitious interactions that
are introduced in the Hamiltonian of the system in or-
der to describe the probability perturbation of a certain
configuration in near–equilibrium conditions. At equi-
librium they are null by definition. The amount of in-
troduced interactions depends on a cutoff range that is
analogous to the previous cutoff, but is now referred to
the kinetic interactions. The kinetic interaction shell has
to necessarily include the thermodynamic shell in order
to properly describe the system thermodynamically.

The choice of the kinetic shell is strictly related to the
vacancy migration paths. The migration paths that are
outside the kinetic interaction shell are in facts not con-
sidered in the mean field model. On the other hand, the
ability of a vacancy to drag a solute atom depends on its
possibility to turn around the solute between two consec-
utive solute–vacancy exchanges. The vacancy may follow
different paths. It was shown in [31] that, in bcc crystals,
paths beyond the 1nn and 2nn position are also impor-
tant for such phenomenon (for instance the 2nn-4nn-3nn-
4nn path). It is therefore evident that any kinetic model
being limited to the 1nn or 2nn would miss out some of
the possible drag patterns.

In that work the extent of the interaction shell reached
the 3nn of 3nn sites (referred to as the 3nn3nn model).
Since in this work the thermodynamic interactions are
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cut off at the 5nn distance, the kinetic model is extended
to the 5nn(1nn)k sites. The truncation at the k:th shell
implies that the calculation is exact for sequences of max-
imum k jumps [31]. In another work [32] it was shown
that in the case of a 3nn(1nn)k approximation in fcc crys-
tals the error decreases exponentially with k. The result
is confirmed in this work for the 5nn(1nn)k approxima-
tion in bcc crystals by performing convergence tests. A
truncation to k=2 leads to a relative error of less than
0.01% in the computation of the LAB coefficient (which
is the most sensitive one) with respect to k=3. For this
reason, the approximation adopted in this work for the
5nn frequency sets is 5nn(1nn)2, hence 1nn of 1nn of
(1nn, 2nn, 3nn, 4nn, 5nn). Conversely, the kinetic mod-
els for the 2nn and 1nn frequency sets are respectively
3nn3nn and 1nn1nn, for the sake of consistency with the
thermodynamic assumptions.

As a benchmark for the obtained transport coeffi-
cients, AKMC simulations were performed, limitedly to
a 2nn(1nn)k kinetic model, by using the lakimoca code
[57]. In the AKMC framework, the phenomenological
coefficients are obtained with the Kubo–Green formula
[23]:

Lij =
∆~Ri ·∆~Rj

6V t
, (9)

where ∆~Ri is the total displacement of all atoms of
species i in time t and V is the system volume. With
such a definition, the Onsager coefficients are expressed
in (ms)−1 units.

The simulation box contains 432 sites disposed in a
6× 6× 6 bcc cell, with one solute atom and one vacancy.
As a single solute atom is present in the box, no solute-
solute interaction takes place and the dilute limit behav-
ior is simulated even though the nominal concentration
of 0.23% might seem not representative of a dilute alloy.
Convergence is reached after 3 · 1010 atomic jumps and
the atomic paths are sampled every 5000 steps, hence
after approximately 10 jumps in average for each atom.

Applications of the Onsager matrix

An accurate computation of the Onsager matrix en-
ables to investigate several different properties of the sys-
tem that rely on the coupling between different diffusion
fluxes. In this work, the Lij:s are employed for the deter-
mination of the vacancy drag factor LBV /LBB , the solute
tracer diffusion coefficients D∗B and the RIS tendency.

In a dilute binary alloy, a solute atom can diffuse in the
opposite direction than that of vacancies (inverse Kirk-
endall), or in the same direction (vacancy drag). Solute
drag by vacancies is a common phenomenon that can oc-
cur, under certain conditions, in several types of alloy
[31]. Contrary to a common misconception, the conven-

tional thermodynamic SVI is not the only ingredient de-
termining the possibility of vacancy drag. For instance,
it is shown in [31] that in alloys with no thermodynamic
interactions, drag can still occur if the set of jump fre-
quencies in the interaction zone allows the vacancy to
complete a path around the solute. It depends in facts
in a intricate manner on the several jump frequencies in-
volved inside and across the interaction zone. For such a
reason, a prediction of solute drag exclusively based on
interaction energies is likely to fail.

In this work, solute drag was investigated following the
approach of Anthony [79], i.e. by calculating the ratio
LBV /LBB , where LBV = −(LAB +LBB). In this frame-
work, the ratio is positive when drag occurs, or negative
otherwise.

Given the impossibility of measuring the full Onsager
matrix by experiments, a way to benchmark the model
is to compare with measured solute tracer diffusion coef-
ficients D∗B , which can be directly derived from the LBB
coefficient. In a dilute alloy, the solute tracer and in-
trinsic diffusion coefficients coincide. Hence, a unique
diffusion coefficient can be defined [73]:

D∗B = DB =
LBB
nCB

, (10)

where n is the number of atoms per atomic volume and
CB the solute concentration.

The coefficients of the Onsager matrix can also be used
to derive RIS tendencies in multicomponent alloys. In
the particular case of dilute alloys, RIS phenomena in
dilute alloys are easier to describe thanks to the reduced
amount of jump frequencies involved and the clear def-
inition of the solute–vacancy interaction. Consequently,
the derivation of the Lij coefficients through the SCMF
method guarantees a high degree of accuracy in the RIS
prediction.

A continuous model relying on the knowledge of the
Onsager coefficients [4, 80] is here applied. When de-
fect and chemical fluxes are in dynamic equilibrium, the
following relationship between chemical and defect con-
centration gradients near defect sinks can be derived:

∇CB
∇CV

=
CACBdAV dAI

(CAdAIDB + CBdBIDA)

(
dBV
dAV

− dBI
dAI

)
,

(11)
where Ci represents the equilibrium concentration of
species (or defect) i, Di the intrinsic diffusion coefficient
and di the partial diffusion coefficients that depend on
the Lij :

dAV =
LVAA + LVAB
CACV

, dBV =
LVAB + LVBB
CBCV

. (12)

Similar partial diffusion coefficients are defined for in-
terstitial mediated diffusion (a detailed description of the
terms in Eq. 11 can be found in [4], and a misprint
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in the same equation has been corrected here). Since
the present work is limited to vacancy diffusion, a pre-
cise evaluation of the ratio ∆CB/∆CV is not achievable.
However, the RIS trends solely due to vacancies can be
qualitatively inferred by the ratio dBV /dAV , as long as
the analogous ratio dBI/dAI is set equal to 1.

As far as vacancy diffusion is concerned, there exists
a clear correlation between diffusion mechanism and RIS
tendency. If vacancy drag occurs, dBV is negative (while
dAV is always positive): only solute enrichment at PD
sinks is possible, as the solute atoms follow the vacancies
migrating towards the sinks. In the case of inverse Kirk-
endall mechanism, the partial diffusion coefficient ratio
is always positive, but enrichment of B can still occur if
dBV < dAV , i.e. if the solute moves slower than the ma-
trix atoms. In this specific case, the LAB coefficient can
be negative but is always greater than -1. Finally, solute
depletion at sinks occurs when dBV > dAV .

Dilute limit and vacancy concentration

The transport coefficients are derived in the dilute
limit (CB → 0). LAB = lAB · CB and LBB = lBB · CB
are directly proportional to CB , as second- and higher-
order terms in CB are neglected. Concerning the LAA
coefficient, there is also a zero order term: LAA =
L0
AA − lAA · CB (where lAA expresses the effect of the

A–B correlation). Therefore in the dilute limit, the drag
factor LBV /LBB , the solute tracer coefficient D∗B and
the partial coefficient dBV are independent from the so-
lute concentration. As well, a first order expansion of
dBV implies that the ratio dBV /dAV is properly defined
at zero order only: dBV /dAV = (lAB + lBB)/L0

AA.
The vacancy concentration is assumed to be that of the

thermodynamic equilibrium (i.e. non–irradiated) condi-
tions:

CeqV = exp

(
− Hf

v

kBT

)
· exp

(
Sfv
kB

)
(13)

The effect of irradiation would be to increase the num-
ber of vacancies of the system, and increase at the same
extent the transport coefficients, which are proportional
to CV . The drag and RIS tendencies given by the partial
diffusion coefficient ratio would not change (although the
RIS effect would increase in magnitude). As for the com-
parison to experimental diffusion coefficients, they are
always performed in non-irradiated conditions.

Results and discussion

Onsager coefficients and vacancy drag

The obtained Onsager coefficients are shown in Fig. 4
(exclusively for the 5nn model), where the solute con-
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FIG. 4. Off-diagonal (LAB) and solute (LBB) Onsager coef-
ficients, obtained with the SCMF method in the 5nn model
for each binary alloy and a solute concentration of 1%. LAB

is negative for all solutes except Cr, in which case LAB > 0
for T > 970 K.

centration CB is assumed to be 1% and the equilibrium
vacancy concentration is given by Eq. 13. The mag-
netic correction is not applied. It is worth observing that
the LAB coefficient deviates from the Arrhenius behav-
ior because of the strong correlations between vacancy
and solute flux. Therefore, extrapolation from the high–
temperature regime to the low–temperature one would
lead to an error estimable up to two orders of magni-
tude.

In the dilute limit (CB → 0), LAA approaches L0
AA and

is independent from the solute species, as it represents
the uncorrelated part of the Fe-Fe transport coefficient.
L0
AA (not shown in Fig. 4) is characterized by a perfect

Arrhenius temperature dependence, where the prefactor
is 2.6 · 1024 (ms)−1 and the slope is Q = 1.25 eV. LBB is
always positive as it should be according to the second
law of thermodynamics, and is directly related to the so-
lute diffusion coefficient. LAB determines the sign of the
wind factor, hence the dragging behavior. It can be ob-
served that in all cases except Cr the LAB coefficients are
negative. This does not necessarily entails solute drag: if
LAB > −1, species A and B move in the same direction
under a gradient of vacancy chemical potential.

The magnitude of the LAB coefficient is larger in the
systems where the SVI are stronger. Only when the crit-
ical condition LAB = −LBB (or equivalently LBV = 0)
is reached, solute drag arises. For this reason, the ratio
LBV /LBB (wind factor) is shown in Fig. 5 as function of
temperature. In this plot the different sets of frequencies
are shown, as well as the Lakimoca results and previous
calculations of the wind factor for the Fe(Cr) [22], Fe(Ni)
[22] and Fe(Cu) [20, 81] alloys.

There exists a minor difference between the 2nn and
5nn models, which implies that in these alloys it is com-
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FIG. 5. Solute drag factors LBV /LBB = −(1+LAB/LBB) ob-
tained with the SCMF method (lines) and with Monte Carlo
simulations (dots) for each binary alloy, with several jump fre-
quency sets (1nn, 2nn, 5nn and FISE). Drag occurs for values
greater than 0. The 2nn-model curve overlaps with the 5nn-
model one for Fe(P). Results of previous works are also shown
for Fe(Cr) [22], Fe(Ni) [22] and Fe(Cu) [20, 81].

pletely acceptable to limit the interaction shell to the
2nn, even with the modifications to the backward fre-
quencies imposed by the detailed balance condition. The
largest discrepancy is in the Fe(Cu) system, where the
strongest 5nn interaction is present: ∆(LBV /LBB) <
0.2. Furthermore, the results of the 2nn model are per-
fectly reproduced by the KMC simulations, which con-
firms the reliability of the SCMF method. In the case of
Fe(Cu), vacancy drag was already predicted by a KMC
study based on ab-initio migration barriers [20], and the
results match perfectly with the 2nn model of this study.
It is worthwhile noticing that the available 2nn multifre-
quency models before SCMF [25, 26] are not suitable for
flux coupling analysis because they underestimate the as-
sociative probability and yield wrong wind factors. This
was clear in [37], where the application of such an ap-
proximated model was not conclusive for the Fe(Cu) and
Fe(Mn) systems. It is also important to remember from
[31] that the 3nn interaction gives a quite considerable

contribution, so it should not be neglected a priori. Nev-
ertheless, in this work the 3nn binding energy is always
quite small; moreover, many of the transition metal im-
purities in iron do not have a strong 3nn interaction,
therefore a complete 2nn model is suitable for solute drag
prediction.

On the other hand, the 1nn model (dashed lines) is
clearly unsuitable. The drag tendency is considerably
underestimated, which marks the importance of the 2nn
SVI in bcc crystals. The 1nn model is often used for
modeling impurity diffusion because of its simplicity, but
it evidently leads to wrong conclusions. For instance, in
[22] it was deduced that no drag would occur in Fe(Ni).
This conclusion is wrong because of the overly approxi-
mated model. Furthermore, solute drag in dilute Fe(Cu)
was predicted in a Monte Carlo study based on a broken
bond model developed for both Fe- and Cu-rich phases
to simulate Cu precipitation, but the predicted drag ten-
dency was weaker [81].

Finally, it can be observed that in most cases the drag
tendency is surprisingly well reproduced by the set of fre-
quencies calculated in the FISE approximation, in spite
of the disagreement with the DFT-computed migration
barriers inside the interaction shell. Exceptions are given
by the Fe(Mn) and Fe(Cr) alloys, for which the FISE
predictions are more inaccurate. At any rate, KMC sim-
ulations based on FISE seem to be suitable for model-
ing vacancy-solute behavior, provided that the cohesive
model is reliable. FISE may therefore represent a good
choice for calculations in multicomponent alloys, where
the amount of jump frequencies to calculate is very large
and cannot be computed in toto with ab initio methods.

In general, it stands out that vacancy drag is a com-
mon phenomenon occurring in all alloys and favored by
low temperatures. This work shows that the conclusions
of [31] for a general AB alloy apply also to the real di-
lute alloys here studied. A strong binding SVI (as for
instance in FeP) has the effect of shifting the curve to-
wards the low–temperature side. The limit for all curves
at high temperatures corresponds to the case of an ideal
alloy with no interactions; from Manning’s theory [15],
the theoretical LBV /LV V ratio is −1.388, which is ap-
proached at lower temperatures in the 1nn model. The
SCMF theory in the 5nn(1nn)2 kinetic model yields a
value of −1.371, in slightly better agreement than the
3nn3nn model [31], since more paths around the solute
atom are available for the vacancy.

There is a clear trend between binding SVI and drag,
as visible in Table III. The solutes are ordered from the
strongest binding (P) to the weakest (Cr). One can see
in the 2nn and 5nn models that the critical temperature
(under which drag occurs) decreases as the binding ten-
dency becomes weaker. Longer-ranged interactions, even
though not remarkably visible in Fig. 5, are in some
cases unexpectedly important for the critical tempera-
ture. For instance, in Fe(Cu),where the Eb5 is the largest,
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TABLE III. 1nn and 2nn binding energies (Eb
Xnn), tran-

sition temperature between drag and non-drag regime
(Tcrit) and wind factor at RPV operational temperature
(LBV /LBB(573 K)) for the different alloys. The solute atoms
are ordered according to Tcrit of the 2nn model.

P Si Cu Ni Mn Cr
Binding energies [eV]

Eb
1nn −0.38 −0.30 −0.26 −0.10 −0.17 −0.06

Eb
2nn −0.27 −0.11 −0.17 −0.21 −0.11 −0.01

Model: 5nn
Tcrit [K] ≈ 2100a 1360 1068 1087 1011 262

LBV /LBB(573 K) 0.99 0.89 0.78 0.74 0.70 −0.74
Model: 2nn

Tcrit [K] ≈ 2130a 1414 1223 1159 1099 333
LBV /LBB(573 K) 0.99 0.91 0.88 0.79 0.78 −0.62
Model: 1nn

Tcrit [K] 714 650 744 ≈ 225a 619 ≈ 220a

LBV /LBB(573 K) 0.38 0.19 0.44 −0.98 0.12 −0.89
Model: 5nn (with FISE approximation)

Tcrit [K] 1750 1090 1085 816 716 ≈ 10a

LBV /LBB(573 K) 0.97 0.75 0.74 0.43 0.28 −1.02
a Linearly extrapolated data.

the drag tendency is weakened because of the higher fre-
quency of the dissociative jump ω45 and Tcrit is hence
15% lower. The wind factor at 573 K, which is approx-
imately the operational temperature of RPV steels, fol-
lows the same trend. In every system, the 1-2 orbital is
activated for solute drag and |Eb2| < |Eb1|. In this spe-
cific case, |Eb1| determines Tcrit and the amplitude of the
drag effect. Conversely, the Fe(Ni) system is exceptional,
since |Eb2| > |Eb1| and consequently Tcrit and the wind
factor are not determined by |Eb1| only. Evidently, the
2nn SVI is fundamental for a correct description of this
alloy. On the other hand, in the 1nn model there is no
clear relationship between binding tendency and critical
temperature or wind factor, which clearly shows the un-
reliability of that model. As for the FISE–computed set
of frequencies, the general trend is respected but the drag
effect is slightly underestimated.

In conclusion, vacancy drag is an expectable phe-
nomenon at RPV operational temperature. Even though
vacancy mobility is rather small, radiation-enhanced and
induced phenomena are likely to occur because of the
strong drag tendency. Such tendency progressively fades
out at temperatures that are close to the Curie tem-
perature in pure iron (1043 K), therefore closer to the
temperatures at which diffusion experiments are usually
performed. At any rate, it is undoubtedly an important
diffusion mechanism at RPV temperature, in competi-
tion with possible interstitial-mediated diffusion.

Diffusion coefficients and RIS

The comparison with experimental solute tracer dif-
fusion coefficients allows for a validation of the model.
As shown by Eq. 10, DB is directly proportional to
the LBB coefficient. The latter is directly related to

the solute-vacancy exchange frequency ω2, however it is
also affected by correlation effects. It can be observed
in Fig. 4, for instance, that Si and Cu are character-
ized by a higher diffusion coefficient than Mn, although
their migration barrier for the solute-vacancy exchange
is considerably higher (0.51 eV versus 0.42 eV). Vacancy
drag has therefore the effect of enhancing solute diffu-
sion. It is also important mentioning that in the 1nn
model the LBB coefficient (and therefore the DB coef-
ficient) is strongly underestimated, which is consistent
with the lack of drag predictive capability of this model.
No substantial differences are observed between the 2nn
and 5nn models.

The solute tracer diffusion coefficients D∗B are shown in
Fig. 6. In order to compare with experimental measure-
ments, the effect of the magnetic transition is taken into
account. It is worthwhile noticing that in non–irradiated
diffusion experiments the interstitial concentration is al-
ways very low compared to that of vacancies. In spite
of the arbitrariness introduced by the attempt frequency
and vacancy formation entropy that were taken from pre-
vious calculations, the activation energies are in quite
good agreement, especially at low temperatures (Ni, P),
at which the magnetic correction is small. The magnetic
transition seems also to be well reproduced for Si, Cu and
Cr. The only remarkable disagreement is represented by
the activation energy and magnetic transition of the D∗Mn

coefficient. The mismatch could depend on the complex
magnetic behavior of Mn in Fe, which might not be well
reproduced by the rudimental model here applied that
was developed for pure iron.

Given the overall agreement between calculated and
experimental values, it can be concluded that in the di-
lute limit the presence of a solute atom does not invali-
date the bulk-iron magnetic model, except possibly the
case of Fe(Mn). A more refined model, such as [38], would
yield visible effects on the drag tendency and the diffu-
sion coefficient slopes only in non-dilute alloys. It is also
worth mentioning that the attempt frequency value in
pure iron affects only the magnitude of the calculated dif-
fusion coefficients. It would influence the drag tendency
if it strongly depended on the relative distance between
vacancy and solute atom, which is considered here to be
unlikely. Even in this case, it was shown in [55] that the
quantitative effect on Tcrit would be limited.

The RIS tendencies can be discussed by looking at Fig.
7, where the partial diffusion coefficient ratio dBV /dAV
is shown for all binary alloys in the 5nn model. Only the
contribution from the vacancy mechanism is considered.
The ratio of partial diffusion coefficients due to intersti-
tial mechanism is set to 1 and the prefactor of Eq. 11 is
assumed to be always positive.

With the exception of Cr, the solutes show a com-
mon trend. Vacancy drag obviously entails solute en-
richment, as the vacancy concentration gradient is neg-
ative at sinks. Therefore, solute enrichment is expected
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FIG. 6. Comparison of solute tracer diffusion coefficients com-
puted with the SCMF method in the 5nn model with exper-
iments [82–95]. The dashed line marks the magnetic order–
disorder transition.
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as long as the ratio is smaller than 1.

at low temperatures and depletion at high temperatures,
in agreement with the experimental trends observed in
[3]. Furthermore, there exists a temperature interval in
which the solute diffuses through the inverse Kirkendall
mechanism, but since dBV is smaller than dAV the sol-
vent atoms are moving away from the grain boundary
and thus solute enhancement still occurs. An analogous
trend is visible even in the Fe(Cr) system, but at such
low temperatures it would never occur in reality.

In conclusion, as far as vacancy diffusion is concerned,
all solutes except for Cr are expected to enrich at grain
boundaries at RPV operational temperature, since they
move through vacancy drag. At a relatively high temper-
atures, Cu and Mn switch from enrichment to depletion,
while Ni, P and Si are always in the enrichment regime
(the crossover for Si occurs above 1400 K). At any rate,
the effective enrichment or depletion tendency has to be
completed by adding the contribution given by intersti-
tials and by the intrinsic diffusion coefficients appearing
in Eq. 11.

CONCLUSIONS

The main goal of this study was to perform a sys-
tematic and complete analysis of transport and diffu-
sion properties of 6 different solute species (Cr, Cu, Mn,
Ni, P and Si) in bcc iron-based dilute alloys, with the
aim of investigating flux coupling phenomena between
solute species and monovacancies, in particular vacancy
drag and RIS. A new multi-scale approach is developed,
where DFT-computed jump frequencies are combined
with a Self-Consistent Mean Field method that allows
to correctly take into consideration longer-ranged solute-
vacancy interactions.

It was shown that vacancy drag is a widespread phe-
nomenon occurring systematically in real binary alloys
characterized by non-negligible solute-vacancy interac-
tions, i.e. all Fe(X) alloys except Fe(Cr). This result,
especially in the case of Fe(Mn) and Fe(Ni), is in contrast
with previous computations [22] based on the available
multifrequency models, which are unsuitable for vacancy
drag prediction as they do not treat correctly the crucial
2nn SVI. The drag strength is affected by the complex
combined effect of thermodynamic and kinetic interac-
tions. As a general trend, vacancy drag is stronger in the
low temperature regime (< 1000 K), including RPV op-
erational temperature (≈ 573 K), while the inverse Kirk-
endall mechanism is dominant at high temperature. The
crossover temperature lies always close to or above the
Curie temperature and is higher in those alloys where
the SVI are stronger, whereas in the Fe(Cr) alloy the
crossover occurs at room temperature. The results are
supported by a very good agreement with Monte Carlo
simulations and experimental solute tracer diffusion co-
efficients. Concerning the RIS profiles, all model alloys



14

with the exception of Fe(Cr) show the same trend: so-
lute enrichment at low temperature and depletion at high
temperature. This trend is in great agreement with the
experiments performed in real multicomponent ferritic–
martensitic alloys [3]; however, synergetic effects between
solute atoms are here neglected. Depletion of Cr should
occur if the only vacancy mechanism were in action. At
any rate, the drag and RIS results are to be further in-
vestigated with the calculation of transport coefficients
for interstitial–mediated diffusion, which is expected to
be relevant in Fe(Cr), Fe(Mn) and Fe(P) [19, 35].

Since the drag character is strong at RPV tempera-
ture, it is likely that solute drag contributes to the forma-
tion of embrittling solute–defect clusters in RPV steels,
although other diffusion mechanisms may also play a
key–role (diffusion via single interstitials, small loops or
voids). The described model represents a powerful tool
for predicting diffusion properties. It combines accurate
first principle calculations with the SCMF framework in
order to obtain exact transport coefficients, especially in
the low–temperature regime which is usually not accessi-
ble by experiments but is extremely important for many
applications. The obtained sets of ab initio migration
barriers represent as well a useful database for mean field
modeling or AKMC simulations of ferritic steels.
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